Domains and Functions of Spike Protein in SARS-Cov-2 in the Context of Vaccine Design

被引:214
作者
Xia, Xuhua [1 ,2 ]
机构
[1] Univ Ottawa, Dept Biol, Ottawa, ON K1N 9A7, Canada
[2] Univ Ottawa, Ottawa Inst Syst Biol, Ottawa, ON K1H 8M5, Canada
来源
VIRUSES-BASEL | 2021年 / 13卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
COVID-19; spike protein; S-2P; SARS-CoV-2; cleavage; vaccine; protein structure; hydrophobicity; isoelectric point; RECEPTOR-BINDING DOMAIN; AMINO-ACID SUBSTITUTION; SARS-COV; CLEAVAGE SITE; TRANSMEMBRANE DOMAIN; MOLECULAR-BIOLOGY; IMMUNE-RESPONSES; S-GLYCOPROTEIN; MERS-COV; VIRUS;
D O I
10.3390/v13010109
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The spike protein in SARS-CoV-2 (SARS-2-S) interacts with the human ACE2 receptor to gain entry into a cell to initiate infection. Both Pfizer/BioNTech's BNT162b2 and Moderna's mRNA-1273 vaccine candidates are based on stabilized mRNA encoding prefusion SARS-2-S that can be produced after the mRNA is delivered into the human cell and translated. SARS-2-S is cleaved into S1 and S2 subunits, with S1 serving the function of receptor-binding and S2 serving the function of membrane fusion. Here, I dissect in detail the various domains of SARS-2-S and their functions discovered through a variety of different experimental and theoretical approaches to build a foundation for a comprehensive mechanistic understanding of how SARS-2-S works to achieve its function of mediating cell entry and subsequent cell-to-cell transmission. The integration of structure and function of SARS-2-S in this review should enhance our understanding of the dynamic processes involving receptor binding, multiple cleavage events, membrane fusion, viral entry, as well as the emergence of new viral variants. I highlighted the relevance of structural domains and dynamics to vaccine development, and discussed reasons for the spike protein to be frequently featured in the conspiracy theory claiming that SARS-CoV-2 is artificially created.
引用
收藏
页数:16
相关论文
共 98 条
  • [1] The proximal origin of SARS-CoV-2
    Andersen, Kristian G.
    Rambaut, Andrew
    Lipkin, W. Ian
    Holmes, Edward C.
    Garry, Robert F.
    [J]. NATURE MEDICINE, 2020, 26 (04) : 450 - 452
  • [2] Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults
    Anderson, E. J.
    Rouphael, N. G.
    Widge, A. T.
    Jackson, L. A.
    Roberts, P. C.
    Makhene, M.
    Chappell, J. D.
    Denison, M. R.
    Stevens, L. J.
    Pruijssers, A. J.
    McDermott, A. B.
    Flach, B.
    Lin, B. C.
    Doria-Rose, N. A.
    O'Dell, S.
    Schmidt, S. D.
    Corbett, K. S.
    Swanson, P. A., II
    Padilla, M.
    Neuzil, K. M.
    Bennett, H.
    Leav, B.
    Makowski, M.
    Albert, J.
    Cross, K.
    Edara, V. V.
    Floyd, K.
    Suthar, M. S.
    Martinez, D. R.
    Baric, R.
    Buchanan, W.
    Luke, C. J.
    Phadke, V. K.
    Rostad, C. A.
    Ledgerwood, J. E.
    Graham, B. S.
    Beigel, J. H.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (25) : 2427 - 2438
  • [3] Structural and biochemical investigation of heptad repeat derived peptides of human SARS corona virus (hSARS-CoV) spike protein
    Basak, Sarmistha
    Hao, Xiaolei
    Chen, Andrew
    Chretien, Michel
    Basak, Ajoy
    [J]. PROTEIN AND PEPTIDE LETTERS, 2008, 15 (09) : 874 - 886
  • [4] Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites
    Belouzard, Sandrine
    Chu, Victor C.
    Whittaker, Gary R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (14) : 5871 - 5876
  • [5] Conformational Reorganization of the SARS Coronavirus Spike Following Receptor Binding: Implications for Membrane Fusion
    Beniac, Daniel R.
    deVarennes, Shauna L.
    Andonov, Anton
    He, Runtao
    Booth, Tim F.
    [J]. PLOS ONE, 2007, 2 (10):
  • [6] Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide
    Bosch, Berend Jan
    Bartelink, Willem
    Rottier, Peter J. M.
    [J]. JOURNAL OF VIROLOGY, 2008, 82 (17) : 8887 - 8890
  • [7] Severe acute respiratory syndrome coroavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides
    Bosch, BJ
    Martina, BEE
    van der Zee, R
    Lepault, J
    Haijema, BJ
    Versluis, C
    Heck, AJR
    de Groot, R
    Osterhaus, ADME
    Rottier, PJM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (22) : 8455 - 8460
  • [8] Important role for the transmembrane domain of severe acute respiratory syndrome coronavirus spike protein during entry
    Broer, R
    Boson, B
    Spaan, W
    Cosset, FL
    Corver, J
    [J]. JOURNAL OF VIROLOGY, 2006, 80 (03) : 1302 - 1310
  • [9] Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner
    Burkard, Christine
    Verheije, Monique H.
    Wicht, Oliver
    van Kasteren, Sander I.
    van Kuppeveld, Frank J.
    Haagmans, Bart L.
    Pelkmans, Lucas
    Rottier, Peter J. M.
    Bosch, Berend Jan
    de Haan, Cornelis A. M.
    [J]. PLOS PATHOGENS, 2014, 10 (11)
  • [10] Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients
    Cao, Zhiliang
    Liu, Lifeng
    Du, Lanying
    Zhang, Chao
    Jiang, Shibo
    Li, Taisheng
    He, Yuxian
    [J]. VIROLOGY JOURNAL, 2010, 7