Liouville theorem for X-elliptic operators

被引:31
作者
Kogoj, Alessia Elisabetta [1 ]
Lanconelli, Ermanno [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, IT-40126 Bologna, Italy
关键词
Liouville theorems; Subelliptic equations; Degenerate elliptic equations; LIE-GROUPS; SPACES; INEQUALITIES;
D O I
10.1016/j.na.2008.12.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Liouville-type theorem for a class of degenerate elliptic operators of the form Lu := Sigma(N)(ij=1) partial derivative(xi) (a(ij)partial derivative(xj)u) + Sigma(N)(i=1)bi partial derivative(xi)u. L is supposed to be X-elliptic, with respect to a family X = (X(1) , ... , X(m)) of locally Lipschitz continuous vector fields, in the sense introduced in [E. Lanconelli, A.E. Kogoj, X-elliptic operators and X-control distances, Contributions in Honor of the Memory of Ennio De Giorgi, Ricerche di Matematica 49 (Suppl.) (2000) 223-243]. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2974 / 2985
页数:12
相关论文
共 20 条
[1]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[2]  
[Anonymous], 1971, Lecture Notes in Mathematics
[3]   Liouville-type theorems for real sub-Laplacians [J].
Bonfiglioli, A ;
Lanconelli, E .
MANUSCRIPTA MATHEMATICA, 2001, 105 (01) :111-124
[4]   Inequalities of John-Nirenberg type in doubling spaces [J].
Buckley, SM .
JOURNAL D ANALYSE MATHEMATIQUE, 1999, 79 (1) :215-240
[5]   Harmonic functions on manifolds [J].
Colding, TH ;
Minicozzi, WP .
ANNALS OF MATHEMATICS, 1997, 146 (03) :725-747
[6]   Covering theorems, inequalities on metric spaces and applications to PDE's [J].
Di Fazio, Giuseppe ;
Gutierrez, Cristian E. ;
Lanconelli, Ermanno .
MATHEMATISCHE ANNALEN, 2008, 341 (02) :255-291
[7]  
Franchi B, 1997, B UNIONE MAT ITAL, V11B, P83
[8]  
Franchi B., 1983, Ann. Sc. Norm. Super. Pisa, V4, P523
[9]  
FRANCHI B, 1996, RELATIONSHIP POINCAR, P1
[10]  
Garofalo N, 1996, COMMUN PUR APPL MATH, V49, P1081, DOI 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO