Self-sacrificed synthesis of carbon-coated SiOx nanowires for high capacity lithium ion battery anodes

被引:125
作者
Li, Zhaohuai [1 ]
He, Qiu [1 ]
He, Liang [1 ]
Hu, Ping [1 ]
Li, Wei [2 ]
Yan, Haowu [1 ]
Peng, Xianzhou [1 ]
Huang, Congyun [2 ]
Mai, Liqiang [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
LONG CYCLE LIFE; MESOPOROUS SILICA; STORAGE PERFORMANCE; GRAPHENE OXIDE; LARGE-SCALE; LOW-COST; GROWTH; ELECTRODES; COMPOSITE; SHELL;
D O I
10.1039/c6ta10583a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon oxide (SiOx) shows great potential for lithium ion battery (LIB) anodes due to its high capacity, environmental friendliness, low cost and high abundance. Herein, we used low-cost mesoporous silica spheres to synthesize core-shell structured porous carbon-coated SiOx nanowires (pCSiO(x) NWs) as a new LIB anode through a novel self-sacrificed method. The one-dimensional structure can accommodate large volume expansion without breaking. The porous carbon coating hinders the penetration of the electrolyte into pC-SiOx NWs and formation of a stable solid-electrolyte interphase (SEI) film on the external surface of pC-SiOx NWs. As a result, the composite shows excellent cycling stability with high reversible specific capacities of 1060 mA h g(-1) (100 cycles) and 623 mA h g(-1) (150 cycles) at current densities of 100 mA g(-1) and 500 mA g(-1), respectively. The proposed facile and scalable synthesis is highly competitive for large-scale applications in lithium storage devices/systems.
引用
收藏
页码:4183 / 4189
页数:7
相关论文
共 59 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Lithium Ion Battery Peformance of Silicon Nanowires with Carbon Skin [J].
Bogart, Timothy D. ;
Oka, Daichi ;
Lu, Xiaotang ;
Gu, Meng ;
Wang, Chongmin ;
Korgel, Brian A. .
ACS NANO, 2014, 8 (01) :915-922
[3]   A three layer design with mesoporous silica encapsulated by a carbon core and shell for high energy lithium ion battery anodes [J].
Cao, Xi ;
Chuan, Xiuyun ;
Masse, Robert C. ;
Huang, Dubin ;
Li, Shuang ;
Cao, Guozhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (45) :22739-22749
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes [J].
Chan, Candace K. ;
Patel, Reken N. ;
O'Connell, Michael J. ;
Korgel, Brian A. ;
Cui, Yi .
ACS NANO, 2010, 4 (03) :1443-1450
[6]   Iron-assisted vapor-phase hydrothermal method:: A low-temperature approach to synthesize blue light emissive SiOx nanowires with single-crystal structure of P21212 [J].
Chen, P ;
Xie, SH ;
Ren, N ;
Zhang, YH ;
Dong, AG ;
Chen, Y ;
Tang, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1470-1471
[7]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[8]  
Gao B, 2001, ADV MATER, V13, P816, DOI 10.1002/1521-4095(200106)13:11<816::AID-ADMA816>3.0.CO
[9]  
2-P
[10]   Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis [J].
He, Liang ;
Toda, Masaya ;
Kawai, Yusuke ;
Miyashita, Hidetoshi ;
Omori, Mamoru ;
Hashida, Toshiyuki ;
Berger, Ruediger ;
Ono, Takahito .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2014, 20 (02) :201-208