Symbolic computation and new families of solitary wave solutions to a Hamiltonian amplitude equation

被引:3
作者
Yan, ZY [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2002年 / 53卷 / 03期
关键词
Hamiltonian amplitude equation; symbolic computation; exact solution; solitary wave solution;
D O I
10.1007/s00033-002-8166-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, new families of solitary wave solutions are found for a Hamiltonian amplitude equation by using a simple transformation and symbolic computation. These solutions include kink-shaped soliton solutions, bell-shaped soliton solutions and the newly combined kink-shaped and bell-shaped soliton solutions that are of important significance in explaining some physical phenomena.
引用
收藏
页码:533 / 537
页数:5
相关论文
共 12 条
[1]  
Ablowitz MJ., 1991, Nonlinear Evolution Equations and Inverse Scattering, DOI 10.1017/CBO9780511623998
[2]  
Bluman G. W., 1989, Symmetries and Differential Equations
[3]  
Gu C.H., 1990, Soliton Theory and its Application
[4]   NEW EXPLICIT EXACT SOLITARY WAVE SOLUTIONS FOR A NEW HAMILTONIAN AMPLITUDE EQUATION [J].
KONG, DX ;
ZHANG, WG .
PHYSICS LETTERS A, 1994, 190 (02) :155-158
[5]  
Olver PJ, 1986, APPL LIE GROUPS DIFF
[6]   New families of exact solutions to the integrable dispersive long wave equations in (2+1)-dimensional spaces [J].
Tian, B ;
Gao, YT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11) :2895-2903
[7]   A NEW HAMILTONIAN AMPLITUDE EQUATION GOVERNING MODULATED WAVE INSTABILITIES [J].
WADATI, M ;
SEGUR, H ;
ABLOWITZ, MJ .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (04) :1187-1193
[8]  
WU WJ, 1986, KEXUE TONGBAO, V31, P1
[9]   A simple transformation for nonlinear waves [J].
Yan, CT .
PHYSICS LETTERS A, 1996, 224 (1-2) :77-84
[10]   New explicit and travelling wave solutions for a class of nonlinear evolution equations [J].
Yan, ZY ;
Zhang, HQ ;
Fan, EG .
ACTA PHYSICA SINICA, 1999, 48 (01) :1-5