LARGE TIME BEHAVIOR OF NONLOCAL AGGREGATION MODELS WITH NONLINEAR DIFFUSION

被引:76
作者
Burger, Martin [1 ]
Di Francesco, Marco [2 ]
机构
[1] Univ Munster, Inst Numer & Angew Math, D-48149 Munster, Germany
[2] Div Math Engn, I-67040 Laquila, Italy
关键词
Nonlinear diffusion; nonlocal PDEs; biological aggregation; stationary solutions; asymptotic behavior; Wasserstein metric;
D O I
10.3934/nhm.2008.3.749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to establish rigorous results on the large time behavior of nonlocal models for aggregation, including the possible presence of nonlinear diffusion terms modeling local repulsions. We show that, as expected from the practical motivation as well as from numerical simulations, one obtains concentrated densities ( Dirac delta distributions) as stationary solutions and large time limits in the absence of diffusion. In addition, we provide a comparison for aggregation kernels with infinite respectively finite support. In the first case, there is a unique stationary solution corresponding to concentration at the center of mass, and all solutions of the evolution problem converge to the stationary solution for large time. The speed of convergence in this case is just determined by the behavior of the aggregation kernels at zero, yielding either algebraic or exponential decay or even finite time extinction. For kernels with finite support, we show that an infinite number of stationary solutions exist, and solutions of the evolution problem converge only in a measure-valued sense to the set of stationary solutions, which we characterize in detail. Moreover, we also consider the behavior in the presence of nonlinear diffusion terms, the most interesting case being the one of small diffusion coefficients. Via the implicit function theorem we give a quite general proof of a rather natural assertion for such models, namely that there exist stationary solutions that have the form of a local peak around the center of mass. Our approach even yields the order of the size of the support in terms of the diffusion coefficients. All these results are obtained via a reformulation of the equations considered using the Wasserstein metric for probability measures, and are carried out in the case of a single spatial dimension.
引用
收藏
页码:749 / 785
页数:37
相关论文
共 37 条
[1]  
Ambrosio L., 2005, LEC MATH
[2]  
[Anonymous], J DIFF EQS
[3]   Finite-time blow-up of solutions of an aggregation equation in Rn [J].
Bertozzi, Andrea L. ;
Laurent, Thomas .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (03) :717-735
[4]   An integro-differential equation arising as a limit of individual cell-based models [J].
Bodnar, M ;
Velazquez, JJL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (02) :341-380
[5]  
Boi S., 2000, Nonlinear Analysis: Real World Application, V1, P163, DOI 10.1016/S0362-546X(99)00399-5
[6]  
Brezis H., 1973, N HOLLAND MATH STUDI, V5
[7]   The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion [J].
Burger, Martin ;
Di Francesco, Marco ;
Dolak-Struss, Yasmin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1288-1315
[8]   On an aggregation model with long and short range interactions [J].
Burger, Martin ;
Capasso, Vincenzo ;
Morale, Daniela .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (03) :939-958
[9]   Contractions in the 2-Wasserstein length space and thermalization of granular media [J].
Carrillo, JA ;
McCann, RJ ;
Villani, CD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (02) :217-263
[10]  
Carrillo JA, 2005, NEW TRENDS IN MATHEMATICAL PHYSICS, P234