Study of the Properties of a Hybrid Piezoelectric and Electromagnetic Energy Harvester for a Civil Engineering Low-Frequency Sloshing Environment

被引:6
作者
Wu, Nan [1 ]
He, Yuncheng [1 ]
Fu, Jiyang [1 ]
Liao, Peng [1 ]
机构
[1] Guangzhou Univ, Guangzhou Univ Tamkang Univ Joint Res Ctr Engn St, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
energy harvester; piezoelectricity; low frequency; civil engineering;
D O I
10.3390/en14020391
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper a novel hybrid piezoelectric and electromagnetic energy harvester for civil engineering low-frequency sloshing environment is reported. The architecture, fabrication and characterization of the harvester are discussed. The hybrid energy harvester is composed of a permanent magnet, copper coil, and PVDF(polyvinylidene difluoride) piezoelectric film, and the upper U-tube device containing a cylindrical fluid barrier is connected to the foundation support plate by a hinge and spring. The two primary means of energy collection were through the vortex street, which alternately impacted the PVDF piezoelectric film through fluid shedding, and the electromotive force (EMF) induced by changes in the magnetic field position in the conducting coil. Experimentally, the maximum output power of the piezoelectric transformer of the hybrid energy harvester was 2.47 mu W (circuit load 270 k omega; liquid level height 80 mm); and the maximum output power of the electromagnetic generator was 2.72 mu W (circuit load 470 k omega; liquid level height 60 mm). The low-frequency sloshing energy collected by this energy harvester can drive microsensors for civil engineering monitoring.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A bidirectional and low-frequency energy harvester for collecting human crowd energy in shopping malls
    Ren, Limin
    Luo, Yu
    Lu, Guangpeng
    Cong, Moyue
    Wang, Xinyu
    Wang, Kuankuan
    Guo, Zhanchen
    Tan, Yisong
    ENERGY CONVERSION AND MANAGEMENT, 2022, 252
  • [42] Optimisation of a Membrane Based Piezoelectric Vibrational Energy Harvester for High Output Power and Low-Frequency Operations
    Nisanth, A.
    Suja, K. J.
    Seena, V
    PROCEEDINGS OF 2021 5TH INTERNATIONAL CONFERENCE ON CONDITION ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS (IEEE CATCON 2021), 2021, : 339 - 342
  • [43] Design and Studies on a Low-Frequency Truss-Based Compressive-Mode Piezoelectric Energy Harvester
    Li, Zhongjie
    Yang, Zhengbao
    Naguib, Hani
    Zu, Jean
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (06) : 2849 - 2858
  • [44] Research-based on a low-frequency non-contact magnetic coupling piezoelectric energy harvester
    He, Lipeng
    Wang, Shuangjian
    Zheng, Xiaotian
    Liu, Lei
    Tian, Xiaochao
    Sun, Baoyu
    ENERGY, 2022, 258
  • [45] A novel seesaw-like piezoelectric energy harvester for low frequency vibration
    Yu, Han
    Hou, Chengwei
    Shan, Xiaobiao
    Zhang, Xingxu
    Song, Henan
    Zhang, Xiaofan
    Xie, Tao
    ENERGY, 2022, 261
  • [46] A Tower-Shaped Three-Dimensional Piezoelectric Energy Harvester for Low-Level and Low-Frequency Vibration
    Xiaoxiang Wei
    Haibo Zhao
    Junjie Yu
    Yiming Zhong
    Yanlin Liao
    Shiwei Shi
    Peihong Wang
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8 : 1537 - 1550
  • [47] A Tower-Shaped Three-Dimensional Piezoelectric Energy Harvester for Low-Level and Low-Frequency Vibration
    Wei, Xiaoxiang
    Zhao, Haibo
    Yu, Junjie
    Zhong, Yiming
    Liao, Yanlin
    Shi, Shiwei
    Wang, Peihong
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2021, 8 (05) : 1537 - 1550
  • [48] Frequency Up-Conversion Piezoelectric-Electromagnetic Hybrid Wave Energy Harvester Based on Magnetic Coupling
    Wang, Hongxin
    Lv, Xingqian
    Liu, Chao
    Fan, Wei
    Yan, Yongfeng
    Han, Lintong
    He, Lipeng
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (12) : 7593 - 7604
  • [49] Low-frequency driven energy harvester with multi-pole magnetic structure
    Byung-Chul Lee
    Gwiy-Sang Chung
    Journal of Mechanical Science and Technology, 2015, 29 : 441 - 446
  • [50] Low-frequency driven energy harvester with multi-pole magnetic structure
    Lee, Byung-Chul
    Chung, Gwiy-Sang
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2015, 29 (02) : 441 - 446