Well-posed problem of a pollutant model of the Kazhikhov-Smagulov type

被引:1
作者
Fang, Daoyuan [1 ]
Fang, Lin [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
关键词
Kazhikhov-Smagulov-type system; well-posed problem; VISCOUS FLUIDS; DENSITY; DIFFUSION; EQUATIONS; SPACES;
D O I
10.1002/mma.1093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a well-posed problem of a pollutant model of the Kazhikhov-Smagulov type, which is derived by Bresch et al. (J. Math. Fluid Mech. 2007; 9:377-397). For proper smooth data, existence and uniqueness are stated on a time interval, which become independent of the diffusion coefficient lambda when lambda goes to zero. A blow-up criterion involving the norm of the gradient of the velocity in L-1(0, T; L-infinity) is also proved. Besides, we show that if the density-dependent Euler system has a smooth solution on a given time interval [0, T-0], then the pollutant model of the Kazhikhov-Smagulov type with the same data and small diffusion coefficient has a smooth solution on [0, T-0]. The diffusion solution tends to the Euler solution when the diffusion coefficient lambda goes to zero. The rate of the convergence in L-2 is of order lambda. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1467 / 1495
页数:29
相关论文
共 14 条
[1]  
Abidi H, 2007, REV MAT IBEROAM, V23, P537
[2]  
[Anonymous], 1984, APPL MATH SCI
[3]  
[Anonymous], 1998, Perfect Incompressible Fluids
[4]  
Beirao da Veiga H, 1983, ANN SC NORM SUP PISA, V10, P341
[5]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[6]   Effect of density dependent viscosities on multiphasic incompressible fluid models [J].
Bresch, Didier ;
Essoufi, El Haasan ;
Sy, Mamadou .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2007, 9 (03) :377-397
[7]  
Danchin R., 2006, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V15, P637, DOI 10.5802/afst.1133
[8]  
Danchin R, 2004, ADV DIFFERENTIAL EQU, V9, P353
[9]  
Danchin R, 2005, REV MAT IBEROAM, V21, P863
[10]   Density-dependent incompressible viscous fluids in critical spaces [J].
Danchin, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1311-1334