A predictor-corrector scheme for the sine-Gordon equation

被引:0
作者
Khaliq, AQM
Abukhodair, B
Sheng, Q
Ismail, MS
机构
[1] Western Illinois Univ, Dept Math, Macomb, IL 61455 USA
[2] Univ Louisana, Dept Math, Lafayette, LA 70504 USA
[3] King Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
关键词
predictor-corrector; method of lines; sine-Gordon equation;
D O I
10.1002/(SICI)1098-2426(200003)16:2<133::AID-NUM1>3.0.CO;2-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A predictor-corrector scheme is developed for the numerical solution of the sine-Gordon equation using the method of lines approach. The solution of the approximating differential system satisfies a recurrence relation, which involves the cosine function. Pade' approximants are used to replace the cosine function in the recurrence relation. The resulting schemes are analyzed for order, stability, and convergence. Numerical results demonstrate the efficiency and accuracy of the predictor-corrector scheme over some well-known existing methods. (C) 2000 John Wiley & Sons, Inc.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 12 条
[1]   On the numerical solution of the sine-Gordon equation .1. Integrable discretizations and homoclinic manifolds [J].
Ablowitz, MJ ;
Herbst, BM ;
Schober, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (02) :299-314
[2]  
[Anonymous], APPL MATH COMPUT
[3]   The solution of the sine-Gordon equation using the method of lines [J].
Bratsos, AG ;
Twizell, EH .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1996, 61 (3-4) :271-292
[4]   SINE-GORDON EQUATION AS A MODEL CLASSICAL FIELD-THEORY [J].
CAUDREY, PJ ;
EILBECK, JC ;
GIBBON, JD .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1975, B 25 (02) :497-512
[5]  
Dodd R. K., 1982, Solitons and nonlinear wave equations
[6]  
EILBECK JC, 1978, SPRINGER SER SOLID S, V8, P28
[7]   METHODS WITH O(H-4) AND O(H-6) PHASE-LAGS FOR PERIODIC INITIAL-VALUE PROBLEMS [J].
KHALIQ, AQM ;
TWIZELL, EH .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1988, 25 (01) :49-54
[8]  
LAMBERT JD, 1991, NUMERICAL METHODS OR
[9]   SOME NUMERICAL EXPERIMENTS ON HIGGS-MODEL [J].
MANORANJAN, VS .
COMPUTER PHYSICS COMMUNICATIONS, 1983, 29 (01) :1-5
[10]  
Serbin S., 1979, APPL MATH COMPUT, V5, P75