Investigation of Pr2NiMnO6aEuroCe0.9Gd0.1O1.95 composite cathode for intermediate-temperature solid oxide fuel cells

被引:7
作者
Li, Huan [1 ]
Sun, Li-Ping [1 ]
Feng, Qingmao [1 ]
Huo, Li-Hua [1 ]
Zhao, Hui [1 ]
Bassat, Jean-Marc [2 ]
Rougier, Aline [2 ]
Fourcade, Sebastien [2 ]
Grenier, Jean-Claude [2 ]
机构
[1] Heilongjiang Univ, Key Lab Funct Inorgan Mat Chem, Minist Educ, Sch Chem & Mat Sci, Harbin 150080, Peoples R China
[2] Univ Bordeaux, CNRS, ICMCB, 87 Ave Dr A Schweitzer, F-33608 Pessac, France
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cells; Double perovskite; Composite cathode; Oxygen reduction reaction mechanism; ELECTROCHEMICAL PERFORMANCE; OXYGEN REDUCTION; POLARIZATION PHENOMENA; LA2NIO4+DELTA; ELECTRODES; KINETICS;
D O I
10.1007/s10008-016-3364-7
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical performance of Pr2NiMnO6 (PNMO)-xCe(0.9)Gd(0.1)O(1.95) (CGO) (x = 0-40 wt%) composite oxides as intermediate-temperature solid oxide fuel cell (IT-SOFC) cathode materials are evaluated. The electrochemical impedance spectroscopy (EIS) analysis results identify two consecutive electrode processes on the composite cathode. Among the various composites, PNMO-30CGO cathode exhibits the best electrochemical performance with the minimum polarization resistance of 0.23 Omega cm(2) and the maximum exchange current density of 75 mA cm(-2) at 700 A degrees C in air. These values are almost constant even after 30-h operation. The oxygen reduction reaction (ORR) mechanism studies prove that the major rate-determining step is the charge-transfer process. Introducing CGO significantly improves the charge-transfer process, by increasing the triple phase boundary (TPB) length and oxygen vacancy concentration in the composite cathode.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 41 条
  • [1] Electrode kinetics of porous mixed-conducting oxygen electrodes
    Adler, SB
    Lane, JA
    Steele, BCH
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) : 3554 - 3564
  • [2] Factors governing oxygen reduction in solid oxide fuel cell cathodes
    Adler, SB
    [J]. CHEMICAL REVIEWS, 2004, 104 (10) : 4791 - 4843
  • [3] Oxygen transport properties of La2Ni1-xCuxO4+δ mixed conducting oxides
    Boehm, E
    Bassat, JM
    Steil, MC
    Dordor, P
    Mauvy, F
    Grenier, JC
    [J]. SOLID STATE SCIENCES, 2003, 5 (07) : 973 - 981
  • [4] Intermediate temperature solid oxide fuel cells
    Brett, Daniel J. L.
    Atkinson, Alan
    Brandon, Nigel P.
    Skinner, Stephen J.
    [J]. CHEMICAL SOCIETY REVIEWS, 2008, 37 (08) : 1568 - 1578
  • [5] Performance and structural stability of Gd0.2Ce0.8O1.9 infiltrated La0.8Sr0.2MnO3 nano-structured oxygen electrodes of solid oxide electrolysis cells
    Chen, Kongfa
    Ai, Na
    Jiang, San Ping
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (20) : 10349 - 10358
  • [6] Simulation of a composite cathode in solid oxide fuel cells
    Chen, XJ
    Chan, SH
    Khor, KA
    [J]. ELECTROCHIMICA ACTA, 2004, 49 (11) : 1851 - 1861
  • [7] An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells
    Chiba, R
    Yoshimura, F
    Sakurai, Y
    [J]. SOLID STATE IONICS, 1999, 124 (3-4) : 281 - 288
  • [8] A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy
    Escudero, M. J.
    Aguadero, A.
    Alonso, J. A.
    Daza, L.
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2007, 611 (1-2) : 107 - 116
  • [9] Comparison of the electrochemical properties of impregnated and functionally gradient LaNi0.6Fe0.4O3-Gd0.2Ce0.8O2 composite cathodes for Solid Oxide Fuel Cell
    Huang, Bo
    Zhu, Xin-jian
    Nie, Huai-wen
    Niu, Ya-ran
    Li, Yang
    Cheng, Nian
    [J]. JOURNAL OF POWER SOURCES, 2013, 235 : 20 - 28
  • [10] Synthesis and electrical conductivity of La2NiO4+δ derived from a polyaminocarboxylate complex precursor
    Huang, DP
    Xu, Q
    Zhang, F
    Chen, W
    Liu, HX
    Zhou, J
    [J]. MATERIALS LETTERS, 2006, 60 (15) : 1892 - 1895