Applications of machine learning in drug discovery and development

被引:1534
作者
Vamathevan, Jessica [1 ]
Clark, Dominic [1 ]
Czodrowski, Paul [2 ]
Dunham, Ian [3 ]
Ferran, Edgardo [1 ]
Lee, George [4 ]
Li, Bin [5 ]
Madabhushi, Anant [6 ,7 ]
Shah, Parantu [8 ]
Spitzer, Michaela [3 ]
Zhao, Shanrong [9 ]
机构
[1] European Bioinformat Inst, European Mol Biol Lab, Cambridge, England
[2] Tech Univ Dortmund, Dortmund, Germany
[3] European Bioinformat Inst, Open Targets & European Mol Biol Lab, Cambridge, England
[4] Bristol Myers Squibb Co, Princeton, NJ USA
[5] Takeda Pharmaceut Int Co, Cambridge, MA USA
[6] Case Western Reserve Univ, Cleveland, OH 44106 USA
[7] Louis Stokes Cleveland Vet Affair Med Ctr, Cleveland, OH USA
[8] EMD Serono R&D Inst, Billerica, MA USA
[9] Pfizer Worldwide Res & Dev, Cambridge, MA USA
关键词
TUMOR-INFILTRATING LYMPHOCYTES; MULTIPLE-MYELOMA; NEURAL-NETWORKS; PREDICTION; EXPRESSION; IDENTIFICATION; MODEL; DIMENSIONALITY; CLASSIFICATION; MUTATIONS;
D O I
10.1038/s41573-019-0024-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Drug discovery and development pipelines are long, complex and depend on numerous factors. Machine learning (ML) approaches provide a set of tools that can improve discovery and decision making for well-specified questions with abundant, high-quality data. Opportunities to apply ML occur in all stages of drug discovery. Examples include target validation, identification of prognostic biomarkers and analysis of digital pathology data in clinical trials. Applications have ranged in context and methodology, with some approaches yielding accurate predictions and insights. The challenges of applying ML lie primarily with the lack of interpretability and repeatability of ML-generated results, which may limit their application. In all areas, systematic and comprehensive high-dimensional data still need to be generated. With ongoing efforts to tackle these issues, as well as increasing awareness of the factors needed to validate ML approaches, the application of ML can promote data-driven decision making and has the potential to speed up the process and reduce failure rates in drug discovery and development.
引用
收藏
页码:463 / 477
页数:15
相关论文
共 114 条
[1]  
Al-Lazikani B., 2008, BIOINFORMATICS GENOM
[2]   Transcriptional regulatory networks underlying gene expression changes in Huntington's disease [J].
Ament, Seth A. ;
Pearl, Jocelynn R. ;
Cantle, Jeffrey P. ;
Bragg, Robert M. ;
Skene, Peter J. ;
Coffey, Sydney R. ;
Bergey, Dani E. ;
Wheeler, Vanessa C. ;
MacDonald, Marcy E. ;
Baliga, Nitin S. ;
Rosinski, Jim ;
Hood, Leroy E. ;
Carroll, Jeffrey B. ;
Price, Nathan D. .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (03)
[3]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[4]   Properties and identification of human protein drug targets [J].
Bakheet, Tala M. ;
Doig, Andrew J. .
BIOINFORMATICS, 2009, 25 (04) :451-457
[5]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[6]   Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease [J].
Boyiadzis, Michael M. ;
Kirkwood, John M. ;
Marshall, John L. ;
Pritchard, Colin C. ;
Azad, Nilofer S. ;
Gulley, James L. .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2018, 6
[7]   Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research [J].
Bravo, Alex ;
Pinero, Janet ;
Queralt-Rosinach, Nuria ;
Rautschka, Michael ;
Furlong, Laura I. .
BMC BIOINFORMATICS, 2015, 16
[8]   Sparse group factor analysis for biclustering of multiple data sources [J].
Bunte, Kerstin ;
Leppaaho, Eemeli ;
Saarinen, Inka ;
Kaski, Samuel .
BIOINFORMATICS, 2016, 32 (16) :2457-2463
[9]   Deep learning based tissue analysis predicts outcome in colorectal cancer [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Turkki, Riku ;
Nordling, Stig ;
Kovanen, Panu E. ;
Verrill, Clare ;
Walliander, Margarita ;
Lundin, Mikael ;
Haglund, Caj ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2018, 8
[10]   Morphoproteomic Characterization of Lung Squamous Cell Carcinoma Fragmentation, a Histological Marker of Increased Tumor Invasiveness [J].
Casanova, Ruben ;
Xia, Daniel ;
Rulle, Undine ;
Nanni, Paolo ;
Grossmann, Jonas ;
Vrugt, Bart ;
Wettstein, Reto ;
Ballester, Rafael ;
Astolfo, Alberto ;
Weder, Walter ;
Moch, Holger ;
Stampanoni, Marco ;
Beck, Andrew H. ;
Soltermann, Alex .
CANCER RESEARCH, 2017, 77 (10) :2585-2593