A numerical model for a hypoeutectic alloy droplet deposition with non-equilibrium solidification

被引:3
作者
Ramanuj, Vimal [1 ]
Tong, Albert Y. [1 ]
机构
[1] Univ Texas, Mech & Aerosp Engn Dept, Arlington, TX 76019 USA
关键词
TRANSPORT PHENOMENA; SURFACE; GRADIENT; SYSTEMS; HEAT;
D O I
10.1007/s10853-017-0842-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A numerical model is developed to study the splat morphology and solidification characteristics of a molten hypoeutectic alloy droplet impinging and solidifying on a substrate. The study finds application in optimization and improvement of metal additive manufacturing processes such as solder jetting, microcasting, sputtering and 3D printing. The major mathematical and numerical challenges include solution of multiphase flow governing equations, interface tracking and modeling the non-equilibrium (rapid) solidification on a macroscopic domain. The free surface is tracked using a volume of fluid method with a piecewise linear interface construction while the mushy phase is modelled as a pseudo porous medium. An enthalpy formulation of the energy equation is coupled with the solute transport equation and the system is solved simultaneously for the temperature and concentration profiles until the eutectic point is reached; beyond which a special treatment is employed till complete solidification. Segregation models (with back diffusion) and eutectic phase diagram are incorporated in the solution procedure. The splat morphology, concentration profiles and microstructural properties are closely examined with emphasis on the convective effects and eutectic formation.
引用
收藏
页码:6034 / 6049
页数:16
相关论文
共 50 条
[21]   A generalized wall-pressure spectral model for non-equilibrium boundary layers [J].
Pargal, Saurabh ;
Yuan, Junlin ;
Moreau, Stephane .
JOURNAL OF FLUID MECHANICS, 2024, 996
[22]   Numerical simulation of thermochemically non-equilibrium inductively coupled plasmas under different operating parameters [J].
Lu, B. X. ;
Feng, Q. K. .
PHYSICS OF PLASMAS, 2018, 25 (09)
[23]   A kinetic model and scaling properties of non-equilibrium clustering of self-propelled particles [J].
Peruani, Fernando ;
Baer, Markus .
NEW JOURNAL OF PHYSICS, 2013, 15
[24]   Non-equilibrium growth model of fibrous mesocrystalline rutile TiO2 nanorods [J].
Kalb, Julian ;
Folger, Alena ;
Scheu, Christina ;
Schmidt-Mende, Lukas .
JOURNAL OF CRYSTAL GROWTH, 2019, 511 :8-14
[25]   Development and benchmarking of numerical model in OpenFOAM® for the prediction of channel segregation during columnar alloy solidification [J].
Kumar, Alok ;
Singh, Anup ;
Kumar, Arvind .
THERMAL SCIENCE AND ENGINEERING PROGRESS, 2022, 35
[26]   Non-equilibrium dynamics of the open quantum O(n)-model with non-Markovian noise: exact results [J].
Wald, Sascha ;
Henkel, Malte ;
Gambassi, Andrea .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (10)
[27]   CVFEM modeling for nanofluid behavior involving non-equilibrium model and Lorentz effect in appearance of radiation [J].
Trung Nguyen-Thoi ;
Sheikholeslami, M. ;
Hamid, Muhammad ;
Rizwan-ul Haq ;
Shafee, Ahmad .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 534
[28]   Non-equilibrium critical dynamics of pure and diluted 2D XY-model [J].
Prudnikov, P. V. ;
Popov, I. S. .
25TH IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (CCP2013), 2014, 510
[29]   Condensation mechanism and pressure fluctuation of a steam centrifugal compressor based on a non-equilibrium condensation model [J].
Li, Yunong ;
Shu, Yue ;
Wang, Zhengdao ;
Yang, Hui ;
Zhang, Wei ;
Zhu, Zuchao ;
Wei, Yikun ;
Zhao, Lei .
PHYSICS OF FLUIDS, 2024, 36 (08)
[30]   Numerical simulation of local thermal non-equilibrium effects on the flow and heat transfer of non-Newtonian Casson fluid in a porous media [J].
Alhadhrami, A. ;
Vishalakshi, C. S. ;
Prasanna, B. M. ;
Sreenivasa, B. R. ;
Alzahrani, Hassan A. H. ;
Gowda, R. J. Punith ;
Kumar, R. Naveen .
CASE STUDIES IN THERMAL ENGINEERING, 2021, 28