Fabrication of suspended microchannel resonators with integrated piezoelectric transduction

被引:30
作者
De Pastina, A. [1 ]
Maillard, D. [1 ]
Villanueva, L. G. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Adv NEMS Lab, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Suspended microchannel resonators; Microfluidic channels; Piezoelectricity; Resonance frequency; Quality factor; Micromechanical sensors; BIOSENSORS; SYSTEMS;
D O I
10.1016/j.mee.2018.02.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Suspended microchannel resonators (SMRs) are resonant mass sensors that contain liquid within the mechanical structure, therefore minimizing damping associated with the fluidic viscous drag. In this paper, we present a novel fabrication process for transparent SMRs with integrated piezoelectric (PZE) transduction, based on thin film depositions and trench filling. Our method allows to finely tune the geometry and the dimensions of the embedded channels, through a short and well-controlled wet etching in KOH. After channel definition, the wafer has a flat surface that enables further microfabrication processing. Piezoelectric (PZE) electrodes are placed on top of each resonator, enabling independent transduction of the devices. Devices are fabricated with a yield higher than 95%, and characterized with and without fluids (water and IPA). PZE-transduced SMRs show a mass responsivity up to 1125 +/- 0.06 mHz/pg and a non-monotonic dependence of the quality factor on fluidic viscosity. Besides PZE actuation and readout, our fabrication process is compatible with the integration of other types of transducers in close proximity to the fluid, broadening the spectrum of potential applications. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 24 条
  • [1] [Anonymous], 2017, P IEEE ULTR S IUS SE
  • [2] Comparative advantages of mechanical biosensors
    Arlett, J. L.
    Myers, E. B.
    Roukes, M. L.
    [J]. NATURE NANOTECHNOLOGY, 2011, 6 (04) : 203 - 215
  • [3] Braun T, 2009, NAT NANOTECHNOL, V4, P179, DOI [10.1038/nnano.2008.398, 10.1038/NNANO.2008.398]
  • [4] Suspended microchannel resonators for biomolecular detection
    Burg, TP
    Manalis, SR
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (13) : 2698 - 2700
  • [5] High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays
    Cermak, Nathan
    Olcum, Selim
    Delgado, Francisco Feijo
    Wasserman, Steven C.
    Payer, Kristofor R.
    Murakami, Mark A.
    Knudsen, Scott M.
    Kimmerling, Robert J.
    Stevens, Mark M.
    Kikuchi, Yuki
    Sandikci, Arzu
    Ogawa, Masaaki
    Agache, Vincent
    Baleras, Francois
    Weinstock, David M.
    Manalis, Scott R.
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (10) : 1052 - 1059
  • [6] De Pastina A., 2018, 3D PRINTED FLU UNPUB
  • [7] A versatile surface channel concept for microfluidic applications
    Dijkstra, M.
    de Boer, M. J.
    Berenschot, J. W.
    Lammerink, T. S. J.
    Wiegerink, R. J.
    Elwenspoek, M.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (10) : 1971 - 1977
  • [8] Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering
    Dubois, MA
    Muralt, P
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) : 6389 - 6395
  • [9] Balanced electronic detection of displacement in nanoelectromechanical systems
    Ekinci, KL
    Yang, YT
    Huang, XMH
    Roukes, ML
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (12) : 2253 - 2255
  • [10] A versatile technology platform for microfluidic handling systems, part I: fabrication and functionalization
    Groenesteijn, Jarno
    de Boer, Meint J.
    Lotters, Joost C.
    Wiegerink, Remco J.
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2017, 21 (07)