Carbon-encapsulated nickel-iron nanoparticles supported on nickel foam as a catalyst electrode for urea electrolysis

被引:59
作者
Wu, Mao-Sung [1 ]
Jao, Chi Yu [1 ]
Chuang, Farn-Yih [1 ]
Chen, Fang-Yi [1 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Chem & Mat Engn, Kaohsiung 807, Taiwan
关键词
Mesoporous carbon; Electrocatalysts; Urea electrolysis; Nickel foam; ALKALINE-MEDIUM; ELECTROCATALYTIC OXIDATION; ELECTROCHEMICAL DECOMPOSITION; FUEL-CELL; NI FOAM; ELECTROOXIDATION; ANODE; ARRAYS; NANOSTRUCTURES; NANOTUBES;
D O I
10.1016/j.electacta.2017.01.035
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A cyanide-bridged bimetallic coordination polymer, nickel hexacyanoferrate, could be pyrolyzed to form carbon-encapsulated nickel-iron (CE-NiFe) nanoparticles. The formation of nitrogen-doped spherical carbon shell with ordered mesoporous structure prevented the structural damage of catalyst cores and allowed the migration and diffusion of electrolyte into the hollow carbon spheres. An ultra-thin layer of CE-NiFe nanoparticles could be tightly attached to the three-dimensional macroporous nickel foam (NF) by electrophoretic deposition. The CE-NiFe nanoparticles could lower the onset potential and increase the current density in anodic urea electrolysis and cathodic hydrogen production as compared with bare NE Macroporous NF substrate was very useful for the urea electrolysis and hydrogen production, which allowed for fast transport of electron, electrolyte, and gas products. The superior electrocatalytic ability of CE-NiFe/NF electrode in urea oxidation and water reduction made it favorable for versatile applications such as water treatment, hydrogen generation, and fuel cells. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:210 / 216
页数:7
相关论文
共 44 条
[1]   Ni&Mn nanoparticles-decorated carbon nanofibers as effective electrocatalyst for urea oxidation [J].
Barakat, Nasser A. M. ;
El-Newehy, Mohamed H. ;
Yasin, Ahmed S. ;
Ghouri, Zafar Khan ;
Al-Deyab, Salem S. .
APPLIED CATALYSIS A-GENERAL, 2016, 510 :180-188
[2]   Urea electrolysis: direct hydrogen production from urine [J].
Boggs, Bryan K. ;
King, Rebecca L. ;
Botte, Gerardine G. .
CHEMICAL COMMUNICATIONS, 2009, (32) :4859-4861
[3]   Dissociation Rates of Urea in the Presence of NiOOH Catalyst: A DFT Analysis [J].
Daramola, Damilola A. ;
Singh, Deepika ;
Botte, Gerardine G. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (43) :11513-11521
[4]   Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation [J].
Ding, Rui ;
Qi, Li ;
Jia, Mingjun ;
Wang, Hongyu .
NANOSCALE, 2014, 6 (03) :1369-1376
[5]   Nanostructured LaNiO3 Perovskite Electrocatalyst for Enhanced Urea Oxidation [J].
Forslund, Robin P. ;
Mefford, J. Tyler ;
Hardin, William G. ;
Alexander, Caleb T. ;
Johnston, Keith P. ;
Stevenson, Keith J. .
ACS CATALYSIS, 2016, 6 (08) :5044-5051
[6]   Preparation of nickel-cobalt nanowire arrays anode electro-catalyst and its application in direct urea/hydrogen peroxide fuel cell [J].
Guo, Fen ;
Cheng, Kui ;
Ye, Ke ;
Wang, Guiling ;
Cao, Dianxue .
ELECTROCHIMICA ACTA, 2016, 199 :290-296
[7]   Enhancement of direct urea-hydrogen peroxide fuel cell performance by three-dimensional porous nickel-cobalt anode [J].
Guo, Fen ;
Cao, Dianxue ;
Du, Mengmeng ;
Ye, Ke ;
Wang, Guiling ;
Zhang, Wenping ;
Gao, Yinyi ;
Cheng, Kui .
JOURNAL OF POWER SOURCES, 2016, 307 :697-704
[8]   Preparation of nickel nanowire arrays electrode for urea electrooxidation in alkaline medium [J].
Guo, Fen ;
Ye, Ke ;
Cheng, Kui ;
Wang, Guiling ;
Cao, Dianxue .
JOURNAL OF POWER SOURCES, 2015, 278 :562-568
[9]   Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell [J].
Jeremiasse, Adriaan W. ;
Hamelers, Hubertus V. M. ;
Saakes, Michel ;
Buisman, Cees J. N. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (23) :12716-12723
[10]   Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis [J].
King, Rebecca L. ;
Botte, Gerardine G. .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9579-9584