Graphene-nickel interfaces: a review

被引:385
作者
Dahal, Arjun [1 ]
Batzill, Matthias [1 ]
机构
[1] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
SURFACE PHONON-DISPERSION; HIGH-QUALITY GRAPHENE; FEW-LAYER GRAPHENE; CHEMICAL-VAPOR-DEPOSITION; MONOLAYER GRAPHITE; EPITAXIAL GRAPHENE; BILAYER GRAPHENE; MOIRE SUPERSTRUCTURES; ELECTRONIC-PROPERTIES; CARBON DIFFUSION;
D O I
10.1039/c3nr05279f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene on nickel is a prototypical example of an interface between graphene and a strongly interacting metal, as well as a special case of a lattice matched system. The chemical interaction between graphene and nickel is due to hybridization of the metal d-electrons with the pi-orbitals of graphene. This interaction causes a smaller separation between the nickel surface and graphene (0.21 nm) than the typical van der Waals gap-distance between graphitic layers (0.33 nm). Furthermore, the physical properties of graphene are significantly altered. Main differences are the opening of a band gap in the electronic structure and a shifting of the pi-band by similar to 2 eV below the Fermi-level. Experimental evidence suggests that the ferromagnetic nickel induces a magnetic moment in the carbon. Substrate induced geometric and electronic changes alter the phonon dispersion. As a consequence, monolayer graphene on nickel does not exhibit a Raman spectrum. In addition to reviewing these fundamental physical properties of graphene on Ni(111), we also discuss the formation and thermal stability of graphene and a surface-confined nickel-carbide. The fundamental growth mechanisms of graphene by chemical vapor deposition are also described. Different growth modes depending on the sample temperature have been identified in ultra high vacuum surface science studies. Finally, we give a brief summary for the synthesis of more complex graphene and graphitic structures using nickel as catalyst and point out some potential applications for graphene-nickel interfaces.
引用
收藏
页码:2548 / 2562
页数:15
相关论文
共 120 条
[1]  
Addou R, 2013, NAT NANOTECHNOL, V8, P41, DOI [10.1038/NNANO.2012.217, 10.1038/nnano.2012.217]
[2]   Graphene on ordered Ni-alloy surfaces formed by metal (Sn, Al) intercalation between graphene/Ni(111) [J].
Addou, Rafik ;
Dahal, Arjun ;
Batzill, Matthias .
SURFACE SCIENCE, 2012, 606 (13-14) :1108-1112
[3]   Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition [J].
Addou, Rafik ;
Dahal, Arjun ;
Sutter, Peter ;
Batzill, Matthias .
APPLIED PHYSICS LETTERS, 2012, 100 (02)
[4]   PHONON-DISPERSION IN MONOLAYER GRAPHITE FORMED ON NI(111) AND NI(001) [J].
AIZAWA, T ;
SOUDA, R ;
ISHIZAWA, Y ;
HIRANO, H ;
YAMADA, T ;
TANAKA, KI ;
OSHIMA, C .
SURFACE SCIENCE, 1990, 237 (1-3) :194-202
[5]   Graphene on Metallic Substrates: Suppression of the Kohn Anomalies in the Phonon Dispersion [J].
Allard, Adrien ;
Wirtz, Ludger .
NANO LETTERS, 2010, 10 (11) :4335-4340
[6]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[7]   The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects [J].
Batzill, Matthias .
SURFACE SCIENCE REPORTS, 2012, 67 (3-4) :83-115
[8]   First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(III) interface [J].
Bertoni, G ;
Calmels, L ;
Altibelli, A ;
Serin, V .
PHYSICAL REVIEW B, 2005, 71 (07)
[9]   SEGREGATION OF CARBON TO (100) SURFACE OF NICKEL [J].
BLAKELY, JM ;
KIM, JS ;
POTTER, HC .
JOURNAL OF APPLIED PHYSICS, 1970, 41 (06) :2693-&
[10]   Graphene on Ir(111): Physisorption with Chemical Modulation [J].
Busse, Carsten ;
Lazic, Predrag ;
Djemour, Rabie ;
Coraux, Johann ;
Gerber, Timm ;
Atodiresei, Nicolae ;
Caciuc, Vasile ;
Brako, Radovan ;
N'Diaye, Alpha T. ;
Bluegel, Stefan ;
Zegenhagen, Joerg ;
Michely, Thomas .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)