Induced topological pressure for countable state Markov shifts

被引:27
作者
Jaerisch, Johannes [1 ]
Kesseboehmer, Marc [2 ]
Lamei, Sanaz [3 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Bremen, Fachbereich Math, D-28359 Bremen, Germany
[3] Univ Guilan, Dept Math, Rasht, Iran
关键词
Thermodynamical formalism; topological pressure; countable state Markov shift; special flows; group extensions; amenability; THERMODYNAMIC FORMALISM; SUSPENSION FLOWS; GIBBS MEASURES; ENTROPY; AMENABILITY; SPECTRA; SPACE;
D O I
10.1142/S0219493713500160
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We generalise Savchenko's definition of topological entropy for special flows over countable Markov shifts by considering the corresponding notion of topological pressure. For a large class of Holder continuous height functions not necessarily bounded away from zero, this pressure can be expressed by our new notion of induced topological pressure for countable state Markov shifts with respect to a non-negative scaling function and an arbitrary subset of finite words, and we are able to set up a variational principle in this context. Investigating the dependence of induced pressure on the subset of words, we give interesting new results connecting the Gurevic and the classical pressure with exhaustion principles for a large class of Markov shifts. In this context we consider dynamical group extensions to demonstrate that our new approach provides a useful tool to characterise amenability of the underlying group structure.
引用
收藏
页数:31
相关论文
共 50 条
[41]   Temperature and pressure induced electronic topological transitions in titanium [J].
Povzner, A. A. ;
Volkov, A. G. .
SOLID STATE COMMUNICATIONS, 2022, 342
[42]   Ergodic optimization for continuous functions on non-Markov shifts [J].
Shinoda, Mao ;
Takahasi, Hiroki ;
Yamamoto, Kenichiro .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025,
[43]   Topological pressure of proper map [J].
Ma, Dongkui ;
Fan, Nuanni .
CHAOS SOLITONS & FRACTALS, 2017, 105 :137-144
[44]   Nonadditive topological pressure for flows* [J].
Barreira, Luis ;
Holanda, Carllos .
NONLINEARITY, 2020, 33 (07) :3370-3394
[45]   THERMODYNAMIC FORMALISM FOR TOPOLOGICAL MARKOV CHAINS ON STANDARD BOREL SPACES [J].
Cioletti, L. ;
Silva, E. ;
Stadlbauer, M. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (11) :6277-6298
[46]   Skew product Smale endomorphisms over countable shifts of finite type [J].
MIHAILESCU, E. U. G. E. N. ;
URBANSKI, M. A. R. I. U. S. Z. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (11) :3105-3149
[47]   The local variational principle of topological pressure for sub-additive potentials [J].
Chen, Beimei ;
Ding, Bangfeng ;
Cao, Yongluo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (11) :3525-3536
[48]   An Abramov-Rokhlin type theorem for induced topological pressure [J].
Rahimi, M. ;
Ghodrati, A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (01)
[49]   Variational principle for weighted topological pressure [J].
Feng, De-Jun ;
Huang, Wen .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (03) :411-452
[50]   Variational Principles for α-estimation Topological Pressure [J].
Xie, Yunxiang ;
Gao, Fei ;
Ye, Menglin .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (04)