Stabilization of a class of fractional order chaotic systems by nonlinear sliding mode

被引:0
作者
Lin, Lijun
Sheng, Yongzhi [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
来源
2018 37TH CHINESE CONTROL CONFERENCE (CCC) | 2018年
关键词
Fractional order; Chaotic system; Nonlinear sliding mode; Stabilization; MITTAG-LEFFLER STABILITY; SYNCHRONIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the stabilization problem of a class of fractional order chaotic systems with unknown modeling uncertainties and external perturbations. A fractional nonlinear sliding surface is proposed, and a reaching control law is obtained to guarantee the stability of the fractional chaotic system in finite time with just a single control input. And the simulation results are given to demonstrate the efficacy of the proposed nonlinear sliding mode control method.
引用
收藏
页码:10099 / 10114
页数:16
相关论文
共 29 条
[21]   Stabilization of a class of fractional order chaotic systems via backstepping approach [J].
Shukla, Manoj Kumar ;
Sharma, B. B. .
CHAOS SOLITONS & FRACTALS, 2017, 98 :56-62
[22]  
Song S., 2017, INT J CONTROL AUTOM, V2017, P1
[23]  
Utkin V., 1992, SLIDING MODES CONTRO
[24]   Sliding mode control of a class of fractional chaotic systems in the presence of parameter perturbations [J].
Xu, Yong ;
Wang, Hua ;
Liu, Di ;
Huang, Hui .
JOURNAL OF VIBRATION AND CONTROL, 2015, 21 (03) :435-448
[25]   Stability analysis, chaos control of a fractional order chaotic chemical reactor system and its function projective synchronization with parametric uncertainties [J].
Yadav, Vijay K. ;
Das, Subir ;
Bhadauria, Beer Singh ;
Singh, Ashok K. ;
Srivastava, Mayank .
CHINESE JOURNAL OF PHYSICS, 2017, 55 (03) :594-605
[26]  
Yan YF., 2016, Math Probl Eng, V2016, P1, DOI [10.1155/2016/4052483, DOI 10.1155/2016/4052483]
[27]   Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses [J].
Yang, Xujun ;
Li, Chuandong ;
Huang, Tingwen ;
Song, Qiankun .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 :416-422
[28]   Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems [J].
Yu, Jimin ;
Hu, Hua ;
Zhou, Shangbo ;
Lin, Xiaoran .
AUTOMATICA, 2013, 49 (06) :1798-1803
[29]   Dynamic analysis of a fractional-order Lorenz chaotic system [J].
Yu, Yongguang ;
Li, Han-Xiong ;
Wang, Sha ;
Yu, Junzhi .
CHAOS SOLITONS & FRACTALS, 2009, 42 (02) :1181-1189