Fast Benchtop Fabrication of Laminar Flow Chambers for Advanced Microscopy Techniques

被引:6
作者
Courson, David S.
Rock, Ronald S.
机构
[1] Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL
基金
英国惠康基金;
关键词
D O I
10.1371/journal.pone.0006479
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy. Method: Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments. Significance: Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy.
引用
收藏
页数:7
相关论文
共 24 条
[1]   Laminar flow cells for single-molecule studies of DNA-protein interactions [J].
Brewer, Laurence R. ;
Bianco, Piero R. .
NATURE METHODS, 2008, 5 (06) :517-525
[2]   Generation of complex concentration profiles in microchannels in a logarithmically small number of steps [J].
Campbell, Kyle ;
Groisman, Alex .
LAB ON A CHIP, 2007, 7 (02) :264-272
[3]   Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation [J].
Dame, Remus T. ;
Noom, Maarten C. ;
Wuite, Gijs J. L. .
NATURE, 2006, 444 (7117) :387-390
[4]   Optical tweezers applied to a microfluidic system [J].
Enger, J ;
Goksör, M ;
Ramser, K ;
Hagberg, P ;
Hanstorp, D .
LAB ON A CHIP, 2004, 4 (03) :196-200
[5]   SINGLE MYOSIN MOLECULE MECHANICS - PICONEWTON FORCES AND NANOMETER STEPS [J].
FINER, JT ;
SIMMONS, RM ;
SPUDICH, JA .
NATURE, 1994, 368 (6467) :113-119
[6]   Direct observation of individual RecA filaments assembling on single DNA molecules [J].
Galletto, Roberto ;
Amitani, Ichiro ;
Baskin, Ronald J. ;
Kowalczykowski, Stephen C. .
NATURE, 2006, 443 (7113) :875-878
[7]   Folding-unfolding transitions in single titin molecules characterized with laser tweezers [J].
Kellermayer, MSZ ;
Smith, SB ;
Granzier, HL ;
Bustamante, C .
SCIENCE, 1997, 276 (5315) :1112-1116
[8]   FLUORESCENT ACTIN-FILAMENTS MOVE ON MYOSIN FIXED TO A GLASS-SURFACE [J].
KRON, SJ ;
SPUDICH, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (17) :6272-6276
[9]  
McDonald JC, 2000, ELECTROPHORESIS, V21, P27, DOI 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO
[10]  
2-C