Rapid Adiabatic Preparation of Injective Projected Entangled Pair States and Gibbs States

被引:51
作者
Ge, Yimin [1 ]
Molnar, Andras [1 ]
Cirac, J. Ignacio [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
关键词
ONE-PHASE REGION; QUANTUM SIMULATIONS; GLAUBER DYNAMICS; SPIN SYSTEMS; EQUILIBRIUM; ALGORITHM; COMPUTER; PHYSICS; GASES;
D O I
10.1103/PhysRevLett.116.080503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a quantum algorithm for many-body state preparation. It is especially suited for injective projected entangled pair states and thermal states of local commuting Hamiltonians on a lattice. We show that for a uniform gap and sufficiently smooth paths, an adiabatic runtime and circuit depth of O(polylogN) can be achieved for O(N) spins. This is an almost exponential improvement over previous bounds. The total number of elementary gates scales as O(NpolylogN). This is also faster than the best known upper bound of O(N-2) on the mixing times of Monte Carlo Markov chain algorithms for sampling classical systems in thermal equilibrium.
引用
收藏
页数:5
相关论文
共 51 条
[1]  
[Anonymous], ARXIV14093435
[2]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[3]   Exponential improvement in precision for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, :283-292
[4]   Preparing Thermal States of Quantum Systems by Dimension Reduction [J].
Bilgin, Ersen ;
Boixo, Sergio .
PHYSICAL REVIEW LETTERS, 2010, 105 (17)
[5]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/NPHYS2252, 10.1038/nphys2252]
[6]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[7]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
[8]   Necessary condition for the quantum adiabatic approximation [J].
Boixo, S. ;
Somma, R. D. .
PHYSICAL REVIEW A, 2010, 81 (03)
[9]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[10]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476