Co-pelletization of a zirconium-based metal-organic framework (UiO-66) with polymer nanofibers for improved useable capacity in hydrogen storage

被引:16
作者
Bambalaza, Sonwabo E. [1 ,2 ,3 ]
Langmi, Henrietta W. [4 ]
Mokaya, Robert [5 ]
Musyoka, Nicholas M. [1 ]
Khotseng, Lindiwe E. [2 ]
机构
[1] Council Sci & Ind Res CSIR, Chem Cluster, HySA Infrastruct Ctr Competence, Ctr Nanostruct & Adv Mat CeNAM, ZA-0001 Pretoria, South Africa
[2] Univ Western Cape, Fac Nat Sci, ZA-7535 Cape Town, South Africa
[3] Mintek, Pyromet Div, 200 Malibongwe Dr, ZA-2194 Randburg, South Africa
[4] Univ Pretoria, Dept Chem, Private Bag X20, ZA-0028 Hatfield, South Africa
[5] Univ Nottingham, Sch Chem, Univ Pk, Nottingham NG7 2RD, England
关键词
Co-pelletization; Hydrogen useable capacity; UiO-66; Metal-organic framework; Hierarchical porosity;
D O I
10.1016/j.ijhydene.2020.12.049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on a concept of co-pelletization using mechanically robust hydroxylated UiO-66 to develop a metal-organic framework (MOF) monolith that contains 5 wt% electrospun polymer nanofibers, and consists of an architecture with alternating layers of MOF and nanofiber mats. The polymers of choice were the microporous Polymer of Intrinsic Microporosity (PIM-1) and non-porous polyacrylonitrile (PAN). Co-pelletized UiO-66/PIM-1 and UiO-66/PAN monoliths retain no less than 85% of the porosity obtained in pristine powder and pelletized UiO-66. The composition of the pore size distribution in co-pelletized UiO-66/PIM-1 and UiO-66/PAN monoliths is significantly different to that of pristine UiO-66 forms, with pristine UiO-66 forms showing 90% of the pore apertures in the micropore region and both UiO-66/nanofiber monoliths showing a composite micromesoporous pore size distribution. The co-pelletized UiO-66/nanofiber monoliths obtained improved useable H-2 capacities in comparison to pristine UiO-66 forms, under isothermal pressure swing conditions. The UiO-66/PIM-1 monolith constitutes the highest gravimetric (and volumetric) useable capacities at 2.3 wt% (32 g L-1) in comparison to 1.8 wt % (12 g L-1) and 1.9 wt% (29 g L-1) obtainable in pristine UiO-66 powder and Ui0-66 pellet, respectively. The co-pelletized UiO-66/PAN monolith, however, shows a significantly reduced surface area by up to 50% less in comparison to pristine UiO-66, but its pore volume only 13% less in comparison to pristine UiO-66. As a result, total gravimetric H-2 capacity of the co-pelletized UiO-66/PAN monolith is 50% less in comparison to that of pristine UiO-66, but crucially the useable volumetric H-2 capacity is 50% higher for the UiO-66/PAN monolith in comparison to pristine UiO-66 powder. The co-pelletization strategy provides a simple method for generating hierarchical porosity into an initially highly microporous MOF without changing the structure of the MOF through complex chemical modifications. The UiO-66/nanofiber monoliths offer improvements to the typically low H-2 useable capacities in highly microporous MOFs, and open new opportunities towards achieving system-level H-2 storage targets. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8607 / 8620
页数:14
相关论文
共 58 条
[1]   Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks [J].
Ahmed, Alauddin ;
Seth, Saona ;
Purewal, Justin ;
Wong-Foy, Antek G. ;
Veenstra, Mike ;
Matzger, Adam J. ;
Siegel, Donald J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Hybrid adsorbent nonwoven structures: a review of current technologies [J].
Amid, Hooman ;
Maze, Benoit ;
Flickinger, Michael C. ;
Pourdeyhimi, Behnam .
JOURNAL OF MATERIALS SCIENCE, 2016, 51 (09) :4173-4200
[3]   Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications [J].
Annamalai, Perushini ;
Musyoka, Nicholas M. ;
Ren, Jianwei ;
Langmi, Henrietta W. ;
Mathe, Mkhulu ;
Bessarabov, Dmitri ;
Petrik, Leslie F. .
RESEARCH ON CHEMICAL INTERMEDIATES, 2017, 43 (07) :4095-4102
[4]   High Volumetric Hydrogen Storage Capacity using Interpenetrated Metal-Organic Frameworks [J].
Balderas-Xicohtencatl, Rafael ;
Schmieder, Phillip ;
Denysenko, Dmytro ;
Volkmer, Dirk ;
Hirscher, Michael .
ENERGY TECHNOLOGY, 2018, 6 (03) :510-512
[5]   Volumetric Hydrogen Storage Capacity in Metal-Organic Frameworks [J].
Balderas-Xicohtencatl, R. ;
Schlichtenmayer, Maurice ;
Hirscher, Michael .
ENERGY TECHNOLOGY, 2018, 6 (03) :578-582
[6]  
Balderas-Xicohtencatl R., 2017, Energy Technol, V6, P578, DOI DOI 10.1002/ENTE.201700636
[7]   Experimental Demonstration of Dynamic Temperature-Dependent Behavior of UiO-66 Metal-Organic Framework: Compaction of Hydroxylated and Dehydroxylated Forms of UiO-66 for High-Pressure Hydrogen Storage [J].
Bambalaza, Sonwabo E. ;
Langmi, Henrietta W. ;
Mokaya, Robert ;
Musyoka, Nicholas M. ;
Khotseng, Lindiwe E. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) :24883-24894
[8]   Compaction of a zirconium metal-organic framework (UiO-66) for high density hydrogen storage applications [J].
Bambalaza, Sonwabo E. ;
Langmi, Henrietta W. ;
Mokaya, Robert ;
Musyoka, Nicholas M. ;
Ren, Jianwei ;
Khotseng, Lindiwe E. .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (46) :23569-23577
[9]   Concepts for improving hydrogen storage in nanoporous materials [J].
Broom, D. P. ;
Webb, C. J. ;
Fanourgakis, G. S. ;
Froudakis, G. E. ;
Trikalitis, P. N. ;
Hirscher, M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (15) :7768-7779
[10]   Gas separation membranes from polymers of intrinsic microporosity [J].
Budd, PM ;
Msayib, KJ ;
Tattershall, CE ;
Ghanem, BS ;
Reynolds, KJ ;
McKeown, NB ;
Fritsch, D .
JOURNAL OF MEMBRANE SCIENCE, 2005, 251 (1-2) :263-269