Stability Anomalies of Some Jacobian-Free Iterative Methods of High Order of Convergence

被引:0
作者
Cordero, Alicia [1 ]
Maimo, Javier G. [2 ]
Torregrosa, Juan R. [1 ]
Vassileva, Maria P. [2 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Camino Vera S-N, E-46022 Valencia, Spain
[2] Inst Tecnol Santo Domingo, Avda Proceres 49, Santo Domingo 10602, Dominican Rep
关键词
nonlinear systems; real multidimensional dynamics; stability; SOLVING SYSTEMS; NEWTON METHOD; FAMILY;
D O I
10.3390/axioms8020051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we design two classes of parametric iterative schemes to solve nonlinear problems that do not need to evaluate Jacobian matrices and need to solve three linear systems per iteration with the same divided difference operator as the coefficient matrix. The stability performance of the classes is analyzed on a quadratic polynomial system, and it is shown that for many values of the parameter, only convergence to the roots of the problem exists. Finally, we check the performance of these methods on some test problems to confirm the theoretical results.
引用
收藏
页数:15
相关论文
共 50 条
[31]   On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory [J].
Chicharro, Francisco, I ;
Cordero, Alicia ;
Garrido, Neus ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS LETTERS, 2020, 104
[32]   On a new family of high-order iterative methods for the matrix pth root [J].
Amat, S. ;
Ezquerro, J. A. ;
Hernandez-Veron, M. A. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (04) :585-595
[33]   Two general higher-order derivative free iterative techniques having optimal convergence order [J].
Behl, Ramandeep ;
Alshomrani, Ali Saleh ;
Magrenan, A. A. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (03) :918-938
[34]   On the convergence of high-order Gargantini-Farmer-Loizou type iterative methods for simultaneous approximation of polynomial zeros [J].
Proinov, Petko D. ;
Vasileva, Maria T. .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 :202-214
[35]   Constructing third-order derivative-free iterative methods [J].
Khattri, Sanjay Kumar ;
Log, Torgrim .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (07) :1509-1518
[36]   Higher order derivative-free iterative methods with and without memory for systems of nonlinear equations [J].
Ahmad, F. ;
Soleymani, F. ;
Haghani, F. Khaksar ;
Serra-Capizzano, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 :199-211
[37]   Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces [J].
Maroju, P. ;
Magrenan, A. A. ;
Sarria, I. ;
Kumar, Abhimanyu .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (03) :686-705
[38]   High convergence order iterative method for nonlinear system of equations in Banach spaces [J].
Sharma, Rajni ;
Deep, Gagan ;
Bala, Neeru .
JOURNAL OF ANALYSIS, 2025, 33 (02) :989-1018
[39]   Reasons for stability in the construction of derivative-free multistep iterative methods [J].
Cordero, Alicia ;
Neta, Beny ;
Torregrosa, Juan R. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (07) :7845-7860
[40]   Stability and convergence of iterative finite element methods for the thermally coupled incompressible MHD flow☆ [J].
Yang, Jinting ;
Zhang, Tong .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (12) :5103-5141