Stability Anomalies of Some Jacobian-Free Iterative Methods of High Order of Convergence

被引:0
作者
Cordero, Alicia [1 ]
Maimo, Javier G. [2 ]
Torregrosa, Juan R. [1 ]
Vassileva, Maria P. [2 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Camino Vera S-N, E-46022 Valencia, Spain
[2] Inst Tecnol Santo Domingo, Avda Proceres 49, Santo Domingo 10602, Dominican Rep
关键词
nonlinear systems; real multidimensional dynamics; stability; SOLVING SYSTEMS; NEWTON METHOD; FAMILY;
D O I
10.3390/axioms8020051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we design two classes of parametric iterative schemes to solve nonlinear problems that do not need to evaluate Jacobian matrices and need to solve three linear systems per iteration with the same divided difference operator as the coefficient matrix. The stability performance of the classes is analyzed on a quadratic polynomial system, and it is shown that for many values of the parameter, only convergence to the roots of the problem exists. Finally, we check the performance of these methods on some test problems to confirm the theoretical results.
引用
收藏
页数:15
相关论文
共 50 条
[21]   Convergence analysis of some iterative methods for a nonlinear matrix equation [J].
Hasanov, Vejdi I. ;
Hakkaev, Sevdzhan A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (04) :1164-1176
[22]   Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations [J].
Behl, Ramandeep ;
Cordero, Alicia ;
Motsa, Sandile S. ;
Torregrosa, Juan R. .
NONLINEAR DYNAMICS, 2018, 91 (01) :81-112
[23]   Construction of Iterative Adaptive Methods with Memory with 100% Improvement of Convergence Order [J].
Torkashvand, V. ;
Araghi, M. A. Fariborzi .
JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (03)
[24]   Stability study of eighth-order iterative methods for solving nonlinear equations [J].
Cordero, Alicia ;
Magrenan, Alberto ;
Quemada, Carlos ;
Torregrosa, Juan R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 291 :348-357
[25]   Convergence and Stability of Some Iterative Sequences in G-metric space [J].
Rauf, K. ;
Zubair, O. R. ;
Aiyetan, B. Y. .
INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2019, 14 (01) :201-+
[26]   Improved High Order Model-Free Adaptive Iterative Learning Control with Disturbance Compensation and Enhanced Convergence [J].
Wang, Zhiguo ;
Gao, Fangqing ;
Liu, Fei .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 134 (01) :343-355
[27]   Increasing in three units the order of convergence of iterative methods for solving nonlinear systems [J].
Cordero, Alicia ;
Leonardo-Sepulveda, Miguel A. ;
Torregrosa, Juan R. ;
Vassileva, Maria P. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 223 :509-522
[28]   Three-step iterative methods with optimal eighth-order convergence [J].
Cordero, Alicia ;
Torregrosa, Juan R. ;
Vassileva, Maria P. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (10) :3189-3194
[29]   On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory [J].
Chicharro, Francisco, I ;
Cordero, Alicia ;
Garrido, Neus ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS LETTERS, 2020, 104
[30]   On a new family of high-order iterative methods for the matrix pth root [J].
Amat, S. ;
Ezquerro, J. A. ;
Hernandez-Veron, M. A. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (04) :585-595