A method for estimating coefficients of soil organic matter dynamics based on long-term experiments

被引:91
作者
Bayer, C.
Lovato, T.
Dieckow, J.
Zanatta, J. A.
Mielniczuk, J.
机构
[1] Univ Fed Rio Grande do Sul, Dept Solos, BR-91501970 Porto Alegre, RS, Brazil
[2] Univ Fed Santa Maria, Dept Solos, BR-97105900 Santa Maria, RS, Brazil
[3] Univ Fed Parana, Dept Solos & Engn Agricola, BR-80035050 Curitiba, Parana, Brazil
关键词
tillage; cropping systems; C model; coefficients; subtropical soil; SOC stocks;
D O I
10.1016/j.still.2005.12.006
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The one-compartment C model C-t = C(0)e(-k2t) + k(1)A/k(2) (1 - e(-k2t)) is being long used to simulate soil organic C (SOC) stocks. C, is the SOC stock at the time t; Co, the initial SOC stock; k(2), the annual rate of SOC loss (mainly mineralization and erosion); k(1), the annual rate to which the added C is incorporated into SOC; and A, the annual C addition. The component C(0)e(-kt) expresses the decay of Co and, for a time t, corresponds to the remains of Co (Co main,). The component k(1)A/k(2) (I - ek2l) refers, at time t, to the stock of SOC derived from C crops (C,,,p). We herein propose a simple method to estimate k(1) and k(2) coefficients for tillage systems conducted in long-term experiments under several cropping systems with a wide range of annual C additions (A) and SOC stocks. We estimated k(1) and k(2) for conventional tillage (CT) and no-till (NT), which has been conducted under three cropping systems (oat/maize -O/M vetch/maize -V/M and oat + vetch/maize + cowpea -OV/MC and two N-urea rates (0 kg N ha(-1) -0 N and 180 kg N ha(-1) -180 N) in a long-term experiment established in a subtropical Acrisol with Co = 32.55 Mg C hat in the 0-17.5 cm layer. A linear equation (C, = a + bA) between the SOC stocks measured at the 13th year (0-17.5 cm) and the mean annual C additions was fitted for CT and NT. This equation is equivalent to the equation of the model C, = Coe(-k2t) + k(1)A/k(2) (1 - e(-k2t)), so that a = C(0)e(-k2t) and bA = k(1)A/k(2)(1 - e(-12t)). Such equivalences thus allow the calculation of k(1) and k(2). NT soil had a lower rate of C loss (k(2) = 0.019 year(-1)) than CT soil (k(2) = 0.040 year(-1)), while k, was not affected by tillage (0.148 year(-1) under CT and 0.146 year(-1) under NT). Despite that only three treatments had lack of fit (LOFIT) value lower than the critical 5% F value, all treatments showed root mean square error (RMSE) lower than RMSE 95% indicating that simulated values fall within 95% confidence interval ;of the measurements. The estimated SOC stocks at steady state (C,) in the 0-17.5 cm layer ranged from 15.65 Mg ha(-1) in CT O/M 0 N to 60.17 Mg ha(-1) in NT OV/MC 180 N. The SOC half-life (t(1/2) = 1n 2/k(2)) was 36 years in NT and 17 years in CT, reflecting the slower C turnover in NT. The effects of NT on the SOC stocks relates to the maintenance of the initial C stocks (higher C-0 (remais)), while increments in C-crop are imparted mainly by crop additions. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:217 / 226
页数:10
相关论文
共 30 条
  • [1] [Anonymous], THESIS U FEDERAL RIO
  • [2] NATURAL C-13 ABUNDANCE AS A TRACER FOR STUDIES OF SOIL ORGANIC-MATTER DYNAMICS
    BALESDENT, J
    MARIOTTI, A
    GUILLET, B
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 1987, 19 (01) : 25 - 30
  • [3] MAIZE ROOT-DERIVED SOIL ORGANIC-CARBON ESTIMATED BY NATURAL C-13 ABUNDANCE
    BALESDENT, J
    BALABANE, M
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 1992, 24 (02) : 97 - 101
  • [4] Major contribution of roots to soil carbon storage inferred from maize cultivated soils
    Balesdent, J
    Balabane, M
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 1996, 28 (09) : 1261 - 1263
  • [5] Relationship of soil organic matter dynamics to physical protection and tillage
    Balesdent, J
    Chenu, C
    Balabane, M
    [J]. SOIL & TILLAGE RESEARCH, 2000, 53 (3-4) : 215 - 230
  • [6] Integration of data models for process design - first steps and experiences
    Bayer, B
    Schneider, R
    Marquardt, W
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) : 599 - 605
  • [7] Bayer C., 1997, Revista Brasileira de Ciencia do Solo, V21, P235
  • [8] Estimating C inputs retained as soil organic matter from corn (Zea Mays L.)
    Bolinder, MA
    Angers, DA
    Giroux, M
    Laverdière, MR
    [J]. PLANT AND SOIL, 1999, 215 (01) : 85 - 91
  • [9] Cerri C. C., 1990, Transactions 14th International Congress of Soil Science, Kyoto, Japan, August 1990, Volume IV, P98
  • [10] CERRI CC, 1986, DINAMICA MAT ORGANIC