Molecular characterization and transcriptional regulation of nitrate reductase in a ruminal bacterium, Selenomonas ruminantium

被引:6
作者
Asanuma, N [1 ]
Iwamoto, M [1 ]
Yoshii, T [1 ]
Hino, T [1 ]
机构
[1] Meiji Univ, Coll Agr, Dept Life Sci, Tama Ku, Kawasaki, Kanagawa 2148571, Japan
关键词
nar gene; nitrate reductase; ruminal bacterium; Selenomonas ruminantium;
D O I
10.2323/jgam.50.55
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nitrate reductase (NaR) of a strain of Selenomonas ruminantium was purified, and the gene encoding NaR (nar was sequenced. The 6.4 kbp nar gene consisted of narG, H, J, and I in this order. The deduced amino acid sequences of these subunits resembled those of membrane-bound nitrate reductase-A reported for Escherichia coli. It was shown that narG, H, J, and I are transcribed as a single polycistronic message (nar operon). The level of intracellular nar-mRNA was higher when S. ruminantium was grown with nitrate than when grown without nitrate, suggesting that nar transcription is enhanced by nitrate. The level of nar-mRNA, which was in parallel to the amount of NaR per cellular nitrogen, was suggested to be enhanced in response to the deficiency of energy and electron supply. Therefore, NaR synthesis in S. ruminantium appeared to be regulated at the transcriptional level in response to the availability of energy and electrons. S. ruminantium reduced nitrate and fumarate simultaneously with no significant effect of fumarate on nar transcription. Addition of fumarate stimulated nitrate reduction, which was caused by increased cell growth because of increased acquirement of ATP via electron transport phosphorylation coupled with fumarate reduction.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 23 条
[1]   Structure and transcriptional regulation of the gene encoding pyruvate formate-lyase of a ruminal bacterium, Streptococcus bovis [J].
Asanuma, N ;
Iwamoto, M ;
Hino, T .
MICROBIOLOGY-UK, 1999, 145 :151-157
[2]  
Asanuma N., 2002, Animal Science Journal, V73, P199, DOI 10.1046/j.1344-3941.2002.00028.x
[3]   Molecular characterization, enzyme properties and transcriptional regulation of phosphoenolpyruvate carboxykinase and pyruvate kinase in a ruminal bacterium, Selenomonas ruminantium [J].
Asanuma, N ;
Hino, T .
MICROBIOLOGY-UK, 2001, 147 :681-690
[4]   Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro [J].
Asanuma, N ;
Iwamoto, M ;
Hino, T .
JOURNAL OF DAIRY SCIENCE, 1999, 82 (04) :780-787
[5]   Regulation of lactate dehydrogenase synthesis in a ruminal bacterium, Streptococcus bovis [J].
Asanuma, N ;
Iwamoto, M ;
Hino, T .
JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 1997, 43 (06) :325-331
[6]   Effects of pH and energy supply on activity and amount of pyruvate formate-lyase in Streptococcus bovis [J].
Asanuma, N ;
Hino, T .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (09) :3773-3777
[7]   Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions [J].
Berks, BC ;
Ferguson, SJ ;
Moir, JWB ;
Richardson, DJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1995, 1232 (03) :97-173
[8]   NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli [J].
Blasco, F ;
Dos Santos, JP ;
Magalon, A ;
Frixon, C ;
Guigliarelli, B ;
Santini, CL ;
Giordano, G .
MOLECULAR MICROBIOLOGY, 1998, 28 (03) :435-447
[9]   NITRATE REDUCTASE OF ESCHERICHIA-COLI - COMPLETION OF THE NUCLEOTIDE-SEQUENCE OF THE NAR OPERON AND REASSESSMENT OF THE ROLE OF THE ALPHA-SUBUNIT AND BETA-SUBUNIT IN IRON-BINDING AND ELECTRON-TRANSFER [J].
BLASCO, F ;
IOBBI, C ;
GIORDANO, G ;
CHIPPAUX, M ;
BONNEFOY, V .
MOLECULAR & GENERAL GENETICS, 1989, 218 (02) :249-256
[10]  
Dawson K. A., 1988, The rumen microbial ecosystem., P445