BAYESIAN BASED 3D SHAPE RECONSTRUCTION FROM VIDEO

被引:1
作者
Ghosh, Nirmalya [1 ]
Bhanu, Bir [1 ]
机构
[1] Univ Calif Riverside, CRIS, Riverside, CA 92521 USA
来源
2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5 | 2008年
关键词
Learning; 3D shape from video;
D O I
10.1109/ICIP.2008.4711964
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a video sequence with a 3D rigid object moving, changing shapes of the 2D projections provide interrelated spatio-temporal cues for incremental 3D shape reconstruction. This paper describes a probabilistic approach for intelligent view-integration to build 3D model of vehicles from traffic videos collected from an uncalibrated static camera. The proposed Bayesian net framework allows the handling of uncertainties in a systematic manner. The performance is verified with several types of vehicles in different videos.
引用
收藏
页码:1152 / 1155
页数:4
相关论文
共 16 条
[1]  
ATKINSON G, IEEE ICCV 05, P309
[2]  
BARBU A, ICCV 05, P572
[3]   Partial surface integration based on variational implicit functions and surfaces for 3D model building [J].
Claes, P ;
Vandermeulen, D ;
Van Gool, L ;
Suetens, R .
FIFTH INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING, PROCEEDINGS, 2005, :31-38
[4]  
GHOSH N, ICPR 06, P272
[5]   Detection and classification of vehicles [J].
Gupte, S ;
Masoud, O ;
Martin, RFK ;
Papanikolopoulos, NP .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2002, 3 (01) :37-47
[6]  
HAN D, IEEE ICCV 2005 VS PT
[7]  
Hartley Richard., 2017, Multiple View Geometry in Computer Vision
[8]  
HORNUNG A, IEEE CVPR 06, P503
[9]  
HUANG PH, IEEE CVPR 06, P379
[10]   Expandable Bayesian networks for 3D object description from multiple views and multiple mode inputs [J].
Kim, ZW ;
Nevatia, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (06) :769-774