Comparison study of some finite volume and finite element methods for the shallow water equations with bottom topography and friction terms

被引:15
作者
Lukacova-Medvidova, M.
Teschke, U.
机构
[1] Hamburg Univ Technol, Inst Numer Simulat, D-21073 Hamburg, Germany
[2] IMS Ingenieurgesellsch mbH, D-20097 Hamburg, Germany
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2006年 / 86卷 / 11期
关键词
well-balanced schemes; steady states; systems of hyperbolic balance laws; shallow water equations; evolution Galerkin schemes; finite element schemes; Darcy-Weisbach friction law; Newton-Raphson method;
D O I
10.1002/zamm.200510280
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a comparison of two discretization methods for the shallow water equations, namely the finite volume method and the finite element scheme. A reliable model for practical interests includes terms modelling the bottom topography as well as the friction effects. The resulting equations belong to the class of systems of hyperbolic partial differential equations of first order with zero order source terms, the so-called balance laws. In order to approximate correctly steady equilibrium states we need to derive a well-balanced approximation of the source term in the finite volume framework. As a result our finite volume method, a genuinely multidimensional finite volume evolution Galerkin (FVEG) scheme, approximates correctly steady states as well as their small perturbations (quasi-steady states). The second discretization scheme, which has been used for practical river flow simulations, is the finite element method (FEM). In contrary to the FVEG scheme, which is a time explicit scheme, the FEM uses an implicit time discretization and the Newton-Raphson iterative scheme for inner iterations. We show that both discretization techniques approximate correctly steady and quasi-steady states with bottom topography and friction and compare their accuracy and performance. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:874 / 891
页数:18
相关论文
共 19 条
[1]  
Botta N, 2004, J COMPUT PHYS, V196, P539, DOI 10.1016/j.icp.2003.11.008
[2]  
COURANT R, 1968, METHODEN MATH PHYS, V2
[3]   Multidimensional upwinding. Part II. Decomposition of the Euler equations into advection equations [J].
Fey, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 143 (01) :181-199
[4]   A well-balanced scheme for the numerical processing of source terms in hyperbolic equations [J].
Greenberg, JM ;
Leroux, AY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :1-16
[5]  
KING I, 1976, P 1 INT C FE WAT LON, P166
[6]   Central-upwind schemes for the Saint-Venant system [J].
Kurganov, A ;
Levy, D .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (03) :397-425
[7]   Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm [J].
LeVeque, RJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) :346-365
[8]   Wave propagation algorithms for multidimensional hyperbolic systems [J].
LeVeque, RJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :327-353
[9]   Well-balanced finite volume evolution Galerkin methods for the shallow water equations with source terms [J].
Lukácová-Medvid'ová, M ;
Vlk, Z .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 47 (10-11) :1165-1171
[10]   Finite volume evolution Galerkin methods for nonlinear hyperbolic systems [J].
Lukácová-Medvid'ová, M ;
Saibertová, J ;
Warnecke, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (02) :533-562