Modular group algebras with almost maximal Lie nilpotency indices

被引:12
作者
Bovdi, Victor
Juhasz, Tibor
Spinelli, Ernesto
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
[2] Coll Nyiregyhaza, Inst Math & Informat, H-4410 Nyiregyhaza, Hungary
[3] Univ Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
基金
匈牙利科学研究基金会;
关键词
group algebras; Lie nilpotency indices; dimensional subgroups;
D O I
10.1007/s10468-006-9022-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that, if KG is Lie nilpotent, then its upper ( and lower) Lie nilpotency index is at most vertical bar G'vertical bar + 1, where vertical bar G'vertical bar is the order of the commutator subgroup. The authors previously determined those groups G for which this index is maximal and here they determine the groups G for which it is 'almost maximal', that is, it takes the next highest possible value, namely vertical bar G'vertical bar - p + 2.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 13 条
[11]  
SHALEV A, 1993, ARCH MATH, V60, P126
[12]  
SHALEV A, 1989, P AM C RING THEOR JE, P85
[13]   A NOTE ON LIE NILPOTENT GROUP-RINGS [J].
SHARMA, RK ;
BIST, V .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 45 (03) :503-506