MnO2 nanoflakes anchored on reduced graphene oxide nanosheets as high performance anode materials for lithium-ion batteries

被引:21
|
作者
Cao, Yong [1 ]
Lin, Xionggui [1 ]
Zhang, Chenglong [1 ]
Yang, Cheng [1 ]
Zhang, Qian [1 ]
Hu, Weiqiang [1 ]
Zheng, Mingsen [1 ]
Dong, Quanfeng [1 ]
机构
[1] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
关键词
ALPHA-MNO2; NANORODS; IN-SITU; FABRICATION; NANOPARTICLES; STORAGE; ENERGY; COMPOSITES; CAPACITY;
D O I
10.1039/c4ra02838d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A MnO2 nanoflake-reduced graphene oxide (MnO2-rGO) composite was synthesized by a facile solution method. The composite exhibited excellent electrochemical performance with a reversible capacity of 1430 mA h g(-1) and 520 mA h g(-1) at current densities of 0.1 A g(-1) and 10 A g(-1), respectively. MnO2 in the composite was proved to be fully activated and went through a complete conversion reaction. The improved kinetics in the MnO2-rGO composite electrode were evidenced by Electrochemical Impedance Spectroscopy (EIS) results, accounting for its extraordinary electrochemical properties compared with that in a simple MnO2-rGO mixture electrode. Due to the uniform dispersion and firm anchoring of MnO2 nanoflakes on the rGO surface, the volume expansion of MnO2 during the charge-discharge process was significantly alleviated. It showed excellent cyclic performance with an extremely large capacity of 1000 mA h g(-1) maintained after 200 cycles at the current density of 1 A g(-1).
引用
收藏
页码:30150 / 30155
页数:6
相关论文
共 50 条
  • [21] TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries
    Fu, Yuan-Xiang
    Dai, Yao
    Pei, Xian-Yinan
    Lyu, Shu-Shen
    Heng, Yi
    Mo, Dong-Chuan
    APPLIED SURFACE SCIENCE, 2019, 497
  • [22] Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries
    Chen, Minghua
    Zhang, Jiawei
    Chen, Qingguo
    Qi, Meili
    Xia, Xinhui
    MATERIALS RESEARCH BULLETIN, 2016, 73 : 459 - 464
  • [23] Graphene anchored mesoporous MnO2 nanostructures as stable and high-performance anode materials for Li-ion batteries
    Ette, Pedda Masthanaiah
    Bosubabu, Dasari
    Ramesha, K.
    ELECTROCHIMICA ACTA, 2022, 414
  • [24] Facile synthesis of α-MnO2/graphene nanocomposites and their high performance as lithium-ion battery anode
    Xing, Lili
    Cui, Chunxiao
    Ma, Chunhua
    Xue, Xinyu
    MATERIALS LETTERS, 2011, 65 (14) : 2104 - 2106
  • [25] Nanohybrids of hematite nanoparticles and reduced graphene oxide nanosheets: Anode materials for lithium ion batteries
    Mubasher
    Mumtaz, M.
    Ali, Basit
    Abbas, Syed Mustansar
    Nam, Kyung-Wan
    Khan, M. Tahir
    Ali, M.
    Hussain, Bahar
    Khan, M. Muddassar
    Mehmood, Ghazanfar
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 907
  • [26] In situ growth of Sn, SnO on graphene nanosheets and their application as anode materials for lithium-ion batteries
    Yue, Wenbo
    Yang, Sheng
    Ren, Yu
    Yang, Xiaojing
    ELECTROCHIMICA ACTA, 2013, 92 : 412 - 420
  • [27] Carbon-Anchored MnO Nanosheets as an Anode for High-Rate and Long-Life Lithium-Ion Batteries
    Xiao, Ying
    Cao, Minhua
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (23) : 12840 - 12849
  • [28] Sn and SnO2-graphene composites as anode materials for lithium-ion batteries
    Wu, Qi-Hui
    Wang, Chundong
    Ren, Jian-Guo
    IONICS, 2013, 19 (12) : 1875 - 1882
  • [29] Tin oxide nano-flower-anchored graphene composites as high-performance anode materials for lithium-ion batteries
    Li, Jing
    Guo, Jianqiang
    Zhang, Xia
    Peng, Rufang
    IONICS, 2016, 22 (12) : 2307 - 2313
  • [30] Multiwalled Carbon Nanotubes Anchored with SnS2 Nanosheets as High-Performance Anode Materials of Lithium-Ion Batteries
    Zhai, Chuanxin
    Du, Ning
    Zhang, Hui
    Yu, Jingxue
    Yang, Deren
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (10) : 4067 - 4074