Random Dynamical Systems with Inputs

被引:4
作者
de Freitas, Michael Marcondes [1 ]
Sontag, Eduardo D. [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
来源
NONAUTONOMOUS DYNAMICAL SYSTEMS IN THE LIFE SCIENCES | 2013年 / 2102卷
基金
美国国家卫生研究院;
关键词
Pullback convergence; Random dynamical systems; Stochastic dynamics; GLOBAL ATTRACTIVITY; STOCHASTIC-SYSTEMS; STABILIZATION; STABILITY;
D O I
10.1007/978-3-319-03080-7_2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work introduces a notion of random dynamical systems with inputs, providing several basic definitions and results on equilibria and convergence. It also presents a "converging input to converging state" ("CICS") result, a concept that plays a key role in the analysis of stability of feedback interconnections, for monotone systems.
引用
收藏
页码:41 / 87
页数:47
相关论文
共 50 条
  • [31] Stability index of linear random dynamical systems
    Cima, Anna
    Gasull, Armengol
    Manosa, Victor
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (15) : 1 - 27
  • [32] The inverse variational principle in random dynamical systems
    Ye, Xiaojiang
    Ma, Dongkui
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2025,
  • [33] LINEARIZATION AND LOCAL STABILITY OF RANDOM DYNAMICAL SYSTEMS
    Evstigneev, Igor V.
    Pirogov, Sergey A.
    Schenk-Hoppe, Klaus R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) : 1061 - 1072
  • [34] On fractional Brownian motions and random dynamical systems
    Garrido-Atienza M.J.
    Schmalfuß B.
    SeMA Journal, 2010, 51 (1): : 71 - 78
  • [35] Koopman Operator Spectrum for Random Dynamical Systems
    Nelida Črnjarić-Žic
    Senka Maćešić
    Igor Mezić
    Journal of Nonlinear Science, 2020, 30 : 2007 - 2056
  • [36] Law of Large Numbers for Random Dynamical Systems
    Horbacz, Katarzyna
    Sleczka, Maciej
    JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (03) : 671 - 684
  • [37] Stability of random dynamical systems on Banach spaces
    Horbacz, Katarzyna
    Myjak, Jozef
    Szarek, Tomasz
    POSITIVITY, 2006, 10 (03) : 517 - 538
  • [38] Random dynamical systems on ordered topological spaces
    Kellerer, Hans G.
    STOCHASTICS AND DYNAMICS, 2006, 6 (03) : 255 - 300
  • [39] Remarks on Topological Entropy of Random Dynamical Systems
    Zhiming Li
    Zhihui Ding
    Qualitative Theory of Dynamical Systems, 2018, 17 : 609 - 616
  • [40] Localized Topological Pressure for Random Dynamical Systems
    Wang, Yunping
    Ji, Yong
    Zhao, Cao
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (04) : 1757 - 1773