Random Dynamical Systems with Inputs

被引:4
|
作者
de Freitas, Michael Marcondes [1 ]
Sontag, Eduardo D. [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
来源
NONAUTONOMOUS DYNAMICAL SYSTEMS IN THE LIFE SCIENCES | 2013年 / 2102卷
基金
美国国家卫生研究院;
关键词
Pullback convergence; Random dynamical systems; Stochastic dynamics; GLOBAL ATTRACTIVITY; STOCHASTIC-SYSTEMS; STABILIZATION; STABILITY;
D O I
10.1007/978-3-319-03080-7_2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work introduces a notion of random dynamical systems with inputs, providing several basic definitions and results on equilibria and convergence. It also presents a "converging input to converging state" ("CICS") result, a concept that plays a key role in the analysis of stability of feedback interconnections, for monotone systems.
引用
收藏
页码:41 / 87
页数:47
相关论文
共 50 条
  • [1] A SMALL-GAIN THEOREM FOR RANDOM DYNAMICAL SYSTEMS WITH INPUTS AND OUTPUTS
    De Freitas, Michael Marcondes
    Sontag, Eduardo D.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (04) : 2657 - 2695
  • [2] Random dynamical systems: a review
    Bhattacharya, R
    Majumdar, M
    ECONOMIC THEORY, 2003, 23 (01) : 13 - 38
  • [3] Random dynamical systems: a review
    Rabi Bhattacharya
    Mukul Majumdar
    Economic Theory, 2003, 23 : 13 - 38 (2004)
  • [4] Lyapunov regularity for random dynamical systems
    Chu, Jifeng
    Zhu, Hailong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (05): : 671 - 687
  • [5] ON THE GLOBAL ATTRACTIVITY OF MONOTONE RANDOM DYNAMICAL SYSTEMS
    Cao, Feng
    Jiang, Jifa
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (03) : 891 - 898
  • [6] Continuous random dynamical systems
    Horbacz, Katarzyna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) : 623 - 637
  • [7] Center manifolds for random dynamical systems with generalized trichotomies
    Bento, Antonio J. G.
    Vilarinho, Helder
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (78)
  • [8] On the linearization of infinite-dimensional random dynamical systems
    Backes, Lucas
    Dragicevic, Davor
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3173 - 3191
  • [9] Bohl-Perron theorem for random dynamical systems
    Du, Nguyen Huu
    Cuong, Tran Manh
    Trang, Ta Thi
    STOCHASTICS AND DYNAMICS, 2023, 23 (01)
  • [10] Synchronization rates and limit laws for random dynamical systems
    Gelfert, Katrin
    Salcedo, Graccyela
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (01)