A Geometric Approach to Time Evolution Operators of Lie Quantum Systems

被引:9
作者
Carinena, Jose F. [1 ]
de Lucas, Javier [1 ]
Ramos, Arturo [2 ]
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Dept Anal Econ, Zaragoza 50005, Spain
关键词
Time evolution; Lie systems; DEPENDENT HARMONIC-OSCILLATOR; SUPERPOSITION FORMULAS; DIFFERENTIAL-EQUATIONS; SCHRODINGER-EQUATION; RICCATI EQUATION; WAVE-FUNCTION; PHASE; PARTICLE; MOTION; STATES;
D O I
10.1007/s10773-008-9909-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.
引用
收藏
页码:1379 / 1404
页数:26
相关论文
共 50 条
  • [31] Phase-Space Approach to Time Evolution of Quantum States in Confined Systems. The Spectral Split-Operator Method
    Kolaczek, Damian
    Spisak, Bartlomiej J.
    Woloszyn, Maciej
    INFORMATION TECHNOLOGY, SYSTEMS RESEARCH, AND COMPUTATIONAL PHYSICS, 2020, 945 : 307 - 320
  • [32] Classical evolution in quantum systems
    Sperling, J.
    Walmsley, I. A.
    PHYSICA SCRIPTA, 2020, 95 (06)
  • [33] A NEW LIE-SYSTEMS APPROACH TO SECOND-ORDER RICCATI EQUATIONS
    Carinena, J. F.
    De Lucas, J.
    Sardon, C.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (02)
  • [34] Geometric Phase with Nonunitary Evolution in the Presence of a Quantum Critical Bath
    Cucchietti, F. M.
    Zhang, J. -F.
    Lombardo, F. C.
    Villar, P. I.
    Laflamme, R.
    PHYSICAL REVIEW LETTERS, 2010, 105 (24)
  • [35] Quantum Simulation of Open Quantum Systems Using a Unitary Decomposition of Operators
    Schlimgen, Anthony W.
    Head-Marsden, Kade
    Sager, LeeAnn M.
    Narang, Prineha
    Mazziotti, David A.
    PHYSICAL REVIEW LETTERS, 2021, 127 (27)
  • [36] A geometric comparison of entanglement and quantum nonlocality in discrete systems
    Spengler, Christoph
    Huber, Marcus
    Hiesmayr, Beatrix C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (06)
  • [37] QUANTUM AND CLASSICAL LIE SYSTEMS FOR EX EXTENDED SYMPLECTIC GROUPS
    Gheorghe, A.
    ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (9-10): : 1436 - 1445
  • [38] Geometric driving of two-level quantum systems
    Ying, Zu-Jian
    Gentile, Paola
    Pablo Baltanas, Jose
    Frustaglia, Diego
    Ortix, Carmine
    Cuoco, Mario
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [39] Universal freezing of quantum correlations within the geometric approach
    Cianciaruso, Marco
    Bromley, Thomas R.
    Roga, Wojciech
    Lo Franco, Rosario
    Adesso, Gerardo
    SCIENTIFIC REPORTS, 2015, 5
  • [40] Quasi-Lie Brackets and the Breaking of Time-Translation Symmetry for Quantum Systems Embedded in Classical Baths
    Sergi, Alessandro
    Hanna, Gabriel
    Grimaudo, Roberto
    Messina, Antonino
    SYMMETRY-BASEL, 2018, 10 (10):