A Geometric Approach to Time Evolution Operators of Lie Quantum Systems

被引:9
|
作者
Carinena, Jose F. [1 ]
de Lucas, Javier [1 ]
Ramos, Arturo [2 ]
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Dept Anal Econ, Zaragoza 50005, Spain
关键词
Time evolution; Lie systems; DEPENDENT HARMONIC-OSCILLATOR; SUPERPOSITION FORMULAS; DIFFERENTIAL-EQUATIONS; SCHRODINGER-EQUATION; RICCATI EQUATION; WAVE-FUNCTION; PHASE; PARTICLE; MOTION; STATES;
D O I
10.1007/s10773-008-9909-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.
引用
收藏
页码:1379 / 1404
页数:26
相关论文
共 50 条
  • [1] A Geometric Approach to Time Evolution Operators of Lie Quantum Systems
    José F. Cariñena
    Javier de Lucas
    Arturo Ramos
    International Journal of Theoretical Physics, 2009, 48
  • [2] Alternative approach to time evolution of quantum systems
    Erol, Mustafa
    PHYSICS ESSAYS, 2020, 33 (04) : 358 - 366
  • [3] TIME EVOLUTION OF QUADRATIC QUANTUM SYSTEMS: EVOLUTION OPERATORS, PROPAGATORS, AND INVARIANTS
    Nagiyev, Sh. M.
    Ahmadov, A. I.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 198 (03) : 392 - 411
  • [4] A New Geometric Approach to Lie Systems and Physical Applications
    José F. Cariñena
    Arturo Ramos
    Acta Applicandae Mathematica, 2002, 70 : 43 - 69
  • [5] A new geometric approach to Lie systems and physical applications
    Cariñena, JF
    Ramos, A
    ACTA APPLICANDAE MATHEMATICAE, 2002, 70 (1-3) : 43 - 69
  • [6] Effective Hamiltonian theory of the geometric evolution of quantum systems
    Shkolnikov, V. O.
    Burkard, Guido
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [7] A Lie Algebra Approach to Lie Group Time Integration of Constrained Systems
    Arnold, Martin
    Cardona, Alberto
    Bruels, Olivier
    STRUCTURE-PRESERVING INTEGRATORS IN NONLINEAR STRUCTURAL DYNAMICS AND FLEXIBLE MULTIBODY DYNAMICS, 2016, 565 : 91 - 158
  • [8] Time evolution of two-dimensional quadratic Hamiltonians: A Lie algebraic approach
    Sandoval-Santana, J. C.
    Ibarra-Sierra, V. G.
    Cardoso, J. L.
    Kunold, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (04)
  • [9] QUANTUM LIE SYSTEMS AND INTEGRABILITY CONDITIONS
    Carinena, Jose F.
    De Lucas, Javier
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (08) : 1235 - 1252
  • [10] Geometric description of modular and weak values in discrete quantum systems using the Majorana representation
    Cormann, Mirko
    Caudano, Yves
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (30)