A Geometric Approach to Time Evolution Operators of Lie Quantum Systems

被引:9
作者
Carinena, Jose F. [1 ]
de Lucas, Javier [1 ]
Ramos, Arturo [2 ]
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Dept Anal Econ, Zaragoza 50005, Spain
关键词
Time evolution; Lie systems; DEPENDENT HARMONIC-OSCILLATOR; SUPERPOSITION FORMULAS; DIFFERENTIAL-EQUATIONS; SCHRODINGER-EQUATION; RICCATI EQUATION; WAVE-FUNCTION; PHASE; PARTICLE; MOTION; STATES;
D O I
10.1007/s10773-008-9909-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.
引用
收藏
页码:1379 / 1404
页数:26
相关论文
共 72 条
[1]   Quantum treatment of the time-dependent coupled oscillators [J].
Abdalla, MS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09) :1997-2012
[2]   EXACT QUANTUM-STATISTICAL DYNAMICS OF AN OSCILLATOR WITH TIME-DEPENDENT FREQUENCY AND GENERATION OF NONCLASSICAL STATES [J].
AGARWAL, GS ;
KUMAR, SA .
PHYSICAL REVIEW LETTERS, 1991, 67 (26) :3665-3668
[4]   QUANTUM EVOLUTION AS A PARALLEL TRANSPORT [J].
ASOREY, M ;
CARINENA, JF ;
PARAMIO, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (08) :1451-1458
[5]   Time-development operator method in quantum mechanics [J].
Balasubramanian, S .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (04) :508-511
[6]   SUPERPOSITION FORMULAS FOR NONLINEAR SUPEREQUATIONS [J].
BECKERS, J ;
GAGNON, L ;
HUSSIN, V ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (10) :2528-2534
[7]   COMPLEX PARABOLIC SUBGROUPS OF G2 AND NONLINEAR DIFFERENTIAL-EQUATIONS [J].
BECKERS, J ;
HUSSIN, V ;
WINTERNITZ, P .
LETTERS IN MATHEMATICAL PHYSICS, 1986, 11 (01) :81-86
[8]  
Beckwith CI, 2002, BRILLS TIBET STU LIB, V2, P27
[9]  
BORZOV VV, 2002, ZAPISKI NAUCHN SEMIN, V285, P39
[10]   SYMPLECTIC STRUCTURE OF THE AHARONOV-ANANDAN GEOMETRIC PHASE [J].
BOYA, LJ ;
CARINENA, JF ;
GRACIABONDIA, JM .
PHYSICS LETTERS A, 1991, 161 (01) :30-34