Soliton content of wave packets with strong phase modulation: The Wentzel-Kramers-Brillouin approach

被引:1
|
作者
Korneev, N. [1 ]
Vysloukh, V. [2 ]
机构
[1] Inst Nacl Astrofis Opt & Electon, Opt Dept, 1 Luis Enrique Erro, Tonantzintla 72840, Pue, Mexico
[2] Univ Las Amer, Cholula 72810, Pue, Mexico
来源
OPTIK | 2021年 / 225卷
关键词
Solitons; Zakharov; Shabat problem; Interference; LIMIT;
D O I
10.1016/j.ijleo.2020.165424
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The WKB approximation for the Zakharov-Shabat scattering problem is used for the analysis of decay of wave packets stimulated by a strong phase modulation in Kerr-type nonlinear medium. It is shown, that for moderate nonlinearity, solitons tend to propagate in the directions of interference fringes formed in the linear limit, and soliton parameters are reasonably well approximated with the WKB method. Simple analytical approximations for distributions of soliton parameters are reported.
引用
收藏
页数:8
相关论文
共 50 条
  • [22] Multicomponent Wentzel-Kramers-Brillouin approximation on arbitrary symplectic manifolds: A star product approach
    Emmrich, C
    Romer, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (07) : 3530 - 3546
  • [23] Light scattering of an arbitrarily oriented cubic particle within the Wentzel-Kramers-Brillouin approach
    Tari, E. M.
    Zahraoui, S.
    Ibnchaikh, M.
    Hachem, N.
    EUROPEAN PHYSICAL JOURNAL D, 2024, 78 (10):
  • [24] Approximation of surface wave velocity in smart composite structure using Wentzel-Kramers-Brillouin method
    Singh, Manoj Kumar
    Sahu, Sanjeev A.
    Singhal, Abhinav
    Chaudhary, Soniya
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2018, 29 (18) : 3582 - 3597
  • [25] Effect of interfacial imperfection on shear wave propagation in a piezoelectric composite structure: Wentzel-Kramers-Brillouin asymptotic approach
    Kumar, Pulkit
    Mahanty, Moumita
    Chattopadhyay, Amares
    Singh, Abhishek Kumar
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2019, 30 (18-19) : 2789 - 2807
  • [26] Nonlinear tomographic inversion by using Wentzel-Kramers-Brillouin modal condition
    Shang, EC
    Wang, YY
    Voronovich, AG
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 102 (06): : 3425 - 3432
  • [27] VARIANT OF WENTZEL-KRAMERS-BRILLOUIN METHOD AND CALCULATION OF CRITICAL NUCLEAR CHARGE
    MARINOV, MS
    POPOV, VS
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 67 (04): : 1250 - 1262
  • [28] WENTZEL-KRAMERS-BRILLOUIN APPROXIMATION FOR A QUANTUM WELL WITH INTERNAL AND EXTERNAL FIELDS
    WALLACE, AB
    DEERING, WD
    JOURNAL OF APPLIED PHYSICS, 1989, 65 (08) : 3127 - 3129
  • [29] SECOND APPROXIMATION OF GENERALIZED WENTZEL-KRAMERS-BRILLOUIN METHOD .2.
    ZHIRNOV, NI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1968, (09): : 25 - &
  • [30] Light scattering by hexagonal ice crystal in the Wentzel-Kramers-Brillouin approximation
    Ibn Chaikh, M.
    Lamsoudi, R.
    Belafhal, A.
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (10)