Minimizing algebraic connectivity over connected graphs with fixed girth

被引:34
作者
Fallat, SM [1 ]
Kirkland, S [1 ]
Pati, S [1 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Laplacian matrix; algebraic connectivity; girth; unicyclic graph; Perron value; characteristic set;
D O I
10.1016/S0012-365X(01)00355-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G,g denote the class of all connected graphs on n vertices with fixed girth g. We prove that if n greater than or equal to 3g-1, then the graph which uniquely minimizes the algebraic connectivity over G,g is the unicyclic "lollipop" graph C-n,C-g obtained by appending a g cycle to a pendant vertex of a path on n - g vertices. The characteristic set of C-n,C-g is also discussed. Throughout both algebraic and combinatorial techniques are used. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:115 / 142
页数:28
相关论文
共 21 条
[1]  
[Anonymous], LINEAR ALGEBRA APPL
[2]  
Bapat R.B., 1997, ENCY MATH, V64
[3]  
Bapat R. B., 1998, LINEAR MULTILINEAR A, V45, P247
[4]  
Bondy J.A., 2008, GRAD TEXTS MATH
[5]  
Fallat S, 1998, ELECTRON J LINEAR AL, V3, P48, DOI DOI 10.13001/1081-3810.10140913.05073
[6]  
FIEDLER M, 1975, CZECH MATH J, V25, P607
[7]  
FIEDLER M, 1975, CZECH MATH J, V25, P619
[8]  
Fiedler M., 1989, Comb. Graph Theory, V25, P57, DOI [DOI 10.4064/-25-1-57-70, 10.4064/-25-1-57-70]
[9]  
FIELDER M, 1973, CZECH MATH J, V23, P298
[10]  
GRADSHETEYN IS, 1965, TABLES INTEGRAL SERI