Generalized synchronization and noise-induced synchronization: The same type of behavior of coupled chaotic systems

被引:5
作者
Koronovskii, A. A. [1 ]
Moskalenko, O. I. [1 ]
Trubetskov, D. I. [1 ]
Khramov, A. E. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Saratov 410012, Russia
基金
俄罗斯基础研究基金会;
关键词
05.45.Xt; 05.45.Pq;
D O I
10.1134/S1028335806040070
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Generalized and noise-induced synchronization that introduced an additional dissipation in coupled chaotic systems and represented the same type of synchronous behavior, were investigated. The generalized synchronization of undirectionally coupled chaotic oscillators means the type of synchronous behavior such that of the state vectors of chaotic oscillators with continuous or discrete time. The regime of generalized synchronization between the chaotic oscillators may be detected with the use of the method of auxiliary system. The presence of generalized synchronization was confirmed by the dependence of the conditional Lyapunov exponent on the coupling parameter. It was shown that both synchronizations occur due to suppression of chaotic oscillators.
引用
收藏
页码:189 / 192
页数:4
相关论文
共 15 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[3]  
CADE PM, 1996, PHYS LETT A, V217, P21
[4]   CHAOS, NOISE, AND SYNCHRONIZATION RECONSIDERED [J].
HERZEL, H ;
FREUND, J .
PHYSICAL REVIEW E, 1995, 52 (03) :3238-3241
[5]   Generalized synchronization: A modified system approach [J].
Hramov, AE ;
Koronovskii, AA .
PHYSICAL REVIEW E, 2005, 71 (06)
[6]   Chaotic synchronization of coupled electron-wave systems with backward waves [J].
Hramov, AE ;
Koronovskii, AA ;
Popov, PV ;
Rempen, IS .
CHAOS, 2005, 15 (01)
[7]   Synchronization of spectral components and its regularities in chaotic dynamical systems [J].
Hramov, AE ;
Koronovskii, AA ;
Kurovskaya, MK ;
Moskalenko, OI .
PHYSICAL REVIEW E, 2005, 71 (05)
[8]   Time scale synchronization of chaotic oscillators [J].
Hramov, AE ;
Koronovskii, AA .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 206 (3-4) :252-264
[9]   Synchronization of chaotic systems driven by identical noise [J].
Kaulakys, B ;
Ivanauskas, F ;
Meskauskas, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (03) :533-539
[10]  
MARTIAN A, 1994, PHYS REV LETT, V72, P1451