STABILITY FOR CONFORMABLE IMPULSIVE DIFFERENTIAL EQUATIONS

被引:0
作者
Ding, Yuanlin [1 ]
Feckan, Michal [2 ,3 ]
Wang, Jinrong [4 ,5 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Comenius Univ, Dept Math Anal & Numer Math, Fac Math Phys & Informat, Bratislava 84248, Slovakia
[3] Slovak Acad Sci, Math Inst, STefanikova 49, Bratislava 81473, Slovakia
[4] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[5] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Conformable derivative; impulsive differential equation; asymptotic stability; generalized Ulam-Hyers-Rassias stability; CONTROLLABILITY; SYSTEMS; MODELS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study impulsive differential equations with conformable derivatives. Firstly, we derive suitable formulas for solving linear impulsive conformable Cauchy problems. Then, we show that the linear problem has asymptotic stability, and the nonlinear problem has generalized Ulam-Hyers-Rassias stability. Also we illustrate our results with examples.
引用
收藏
页数:19
相关论文
共 50 条
[21]   Existence and stability of almost periodic solutions for impulsive differential equations [J].
Liu, Junwei ;
Zhang, Chuanyi .
ADVANCES IN DIFFERENCE EQUATIONS, 2012, :1-14
[22]   Stability of impulsive functional differential equations via the Liapunov functional [J].
Luo, Zhiguo ;
Shen, Jianhua .
APPLIED MATHEMATICS LETTERS, 2009, 22 (02) :163-169
[23]   Exponential Stability of Impulsive Delay Differential Equations [J].
Zhang, G. L. ;
Song, M. H. ;
Liu, M. Z. .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[24]   On the asymptotic stability for impulsive functional differential equations [J].
Fangfang Jiang ;
Jianhua Shen .
Acta Mathematica Hungarica, 2012, 134 :307-321
[25]   On the asymptotic stability for impulsive functional differential equations [J].
Jiang, F. ;
Shen, J. .
ACTA MATHEMATICA HUNGARICA, 2012, 134 (03) :307-321
[26]   PROPERTIES OF THE SOLUTIONS TO PERIODIC CONFORMABLE NON-AUTONOMOUS NON-INSTANTANEOUS IMPULSIVE DIFFERENTIAL EQUATIONS [J].
Ding, Yuanlin ;
Liu, Kui .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (30) :1-22
[27]   Ulam's Stability of Conformable Neutral Fractional Differential Equations [J].
Ahmad, Manzoor ;
Zada, Akbar .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
[28]   Asymptotic stability of solutions of impulsive multi-delay differential equations [J].
You, Zhongli ;
Wang, JinRong ;
O'Regan, D. .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (15) :4143-4152
[29]   Global exponential stability of a class of retarded impulsive differential equations with applications [J].
Xia, Yonghui ;
Wong, Patricia J. Y. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (01) :440-453
[30]   Periodic boundary value problems for impulsive conformable fractional integro-differential equations [J].
Asawasamrit, Suphawat ;
Ntouyas, Sotiris K. ;
Thiramanus, Phollakrit ;
Tariboon, Jessada .
BOUNDARY VALUE PROBLEMS, 2016,