STABILITY FOR CONFORMABLE IMPULSIVE DIFFERENTIAL EQUATIONS

被引:0
作者
Ding, Yuanlin [1 ]
Feckan, Michal [2 ,3 ]
Wang, Jinrong [4 ,5 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Comenius Univ, Dept Math Anal & Numer Math, Fac Math Phys & Informat, Bratislava 84248, Slovakia
[3] Slovak Acad Sci, Math Inst, STefanikova 49, Bratislava 81473, Slovakia
[4] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[5] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Conformable derivative; impulsive differential equation; asymptotic stability; generalized Ulam-Hyers-Rassias stability; CONTROLLABILITY; SYSTEMS; MODELS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study impulsive differential equations with conformable derivatives. Firstly, we derive suitable formulas for solving linear impulsive conformable Cauchy problems. Then, we show that the linear problem has asymptotic stability, and the nonlinear problem has generalized Ulam-Hyers-Rassias stability. Also we illustrate our results with examples.
引用
收藏
页数:19
相关论文
共 32 条
[11]  
Henderson J., 2019, AIMS MATHMATICS, V4, P1640
[12]  
Hernández E, 2013, P AM MATH SOC, V141, P1641
[13]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[14]   Explicit exact solutions to some one-dimensional conformable time fractional equations [J].
Korkmaz, Alper .
WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (01) :124-137
[15]   Existence and Ulam's Stability for Conformable Fractional Differential Equations with Constant Coefficients [J].
Li, Mengmeng ;
Wang, JinRong ;
O'Regan, D. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (04) :1791-1812
[16]   Optimal control of noninstantaneous impulsive differential equations [J].
Liu, Shengda ;
Wang, JinRong ;
Zhou, Yong .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (17) :7668-7698
[17]   APPROXIMATE CONTROLLABILITY OF NON-AUTONOMOUS SOBOLEV TYPE INTEGRO-DIFFERENTIAL EQUATIONS HAVING NONLOCAL AND NON-INSTANTANEOUS IMPULSIVE CONDITIONS [J].
Meraj, Arshi ;
Pandey, Dwijendra N. .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02) :501-518
[18]   Exact Solutions of Fractional Partial Differential Equation Systems with Conformable Derivative [J].
Ozkan, Ozan ;
Kurt, Ali .
FILOMAT, 2019, 33 (05) :1313-1322
[19]   Existence and Ulam Stability of Solutions for Conformable Impulsive Differential Equations [J].
Qiu, Wanzheng ;
Wang, JinRong ;
O'Regan, Donal .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (06) :1613-1637
[20]  
Rosales-García J, 2020, REV MEX FIS, V66, P224, DOI [10.31349/RevMexFis.66.224, 10.31349/revmexfis.66.224]