Homoclinic Solutions for a Class of Nonlinear Difference Equations

被引:2
作者
Mai, Ali [1 ,2 ,3 ]
Zhou, Zhan [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Univ, Guangdong Higher Educ Inst, Key Lab Math & Interdisciplinary Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Yuncheng Univ, Dept Appl Math, Yuncheng 044000, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
GAP SOLITONS; SCHRODINGER-EQUATIONS; DISCRETE; EXISTENCE;
D O I
10.1155/2014/749678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of homoclinic solutions of a class of nonlinear difference equations with superlinear nonlinearity by using the generalized Nehari manifold approach. For the case where the nonlinearity is odd, we obtain infinitely many homoclinic solutions of the equations. Recent results in the literature are generalized and improved.
引用
收藏
页数:8
相关论文
共 23 条
[11]  
Pankov A., 2008, COMMUN MATH ANAL, V5, P38
[12]  
Rabinowitz PH, 1986, MINIMAX METHODS CRIT
[13]   Gap Solitons in Periodic Discrete Schrodinger Equations with Nonlinearity [J].
Shi, Haiping .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :1065-1075
[14]   Existence of gap solitons in periodic discrete nonlinear Schrodinger equations [J].
Shi, Haiping ;
Zhang, Hongqiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) :411-419
[15]   SOLITONS IN POLYACETYLENE [J].
SU, WP ;
SCHRIEFFER, JR ;
HEEGER, AJ .
PHYSICAL REVIEW LETTERS, 1979, 42 (25) :1698-1701
[16]  
Szulkin A., 2010, Handbook of nonconvex analysis and applications, P597
[17]  
Willem M., 1997, Minimax theorems
[18]   Standing wave solutions of the discrete non-linear Schrodinger equations with unbounded potentials, II [J].
Zhang, Guoping ;
Pankov, Alexander .
APPLICABLE ANALYSIS, 2010, 89 (09) :1541-1557
[19]   Existence of breather solutions of the DNLS equations with unbounded potentials [J].
Zhang, Guoping ;
Liu, Fengshan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E786-E792
[20]   Breather solutions of the discrete nonlinear Schrodinger equations with unbounded potentials [J].
Zhang, Guoping .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)