Generic regularity of conservative solutions to a nonlinear wave equation

被引:34
作者
Bressan, Alberto [1 ]
Chen, Geng [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2017年 / 34卷 / 02期
基金
美国国家科学基金会;
关键词
Nonlinear wave equations; Generic regularity; Singularity; PARTIAL-DIFFERENTIAL-EQUATIONS; SINGULARITIES;
D O I
10.1016/j.anihpc.2015.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with conservative solutions to the nonlinear wave equation u(tt) -c(u)(c(u)u(x))(x) = 0. For an open dense set of C-3 initial data, we prove that the solution is piecewise smooth in the t-x plane, while the gradient ux can blow up along finitely many characteristic curves. The analysis is based on a variable transformation introduced in [7], which reduces the equation to a semilinear system with smooth coefficients, followed by an application of Thom's transversality theorem. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:335 / 354
页数:20
相关论文
共 18 条