A 3-D Unconditionally Stable Precise Integration Time Domain Method for the Numerical Solutions of Maxwell's Equations in Circular Cylindrical Coordinates

被引:1
作者
Zhao, Xin-Tai [1 ]
Wang, Zhi-Gong [1 ]
Ma, Xi-Kui [2 ]
机构
[1] Southeast Univ, Inst RF & OE ICs, Nanjing 210096, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Elect Engn, Xian 710049, Peoples R China
关键词
FDTD method; 3-D precise integration time domain method; stability; numerical dispersion; circular cylindrical coordinates; ALGORITHM;
D O I
10.1002/mmce.20344
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An unconditionally stable precise integration time-domain method is extended to 3-D circular cylindrical coordinates to solve Maxwell's equations. In contrast with the cylindrical fintie-difference time-domain method, not only can it remove the stability condition restraint, but also make the numerical dispersion independent of the time-step size. Numerical results are presented to demonstrate the effectiveness of this method. (C) 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE 19: 230-242, 2009.
引用
收藏
页码:230 / 242
页数:13
相关论文
共 16 条
[1]  
[Anonymous], IEEE MTT S INT MICR
[2]   Finite-difference time-domain algorithm for solving Maxwell's equations in rotationally symmetric geometries [J].
Chen, YC ;
Mittra, R ;
Harms, P .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1996, 44 (06) :832-839
[3]  
Ge D.B., 2002, Finite-Difference Time-Domain Method for Electromagnetic Waves
[4]  
KERMANI MH, IEEE A PS INT S WASH, P142
[5]  
KERMANI MH, IEEE A PS INT S MONT, P595
[6]   A 3-D precise integration time-domain method without the restraints of the Courant-Friedrich-Levy stability condition for the numerical solution of Maxwell's equations [J].
Ma, Xikui ;
Zhao, Xintai ;
Zhao, Yanzhen .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (07) :3026-3037
[7]   A new FDTD algorithm based on alternating-direction implicit method [J].
Namiki, T .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (10) :2003-2007
[8]  
Taflove A., 1996, COMPUTATIONAL ELECTR
[9]  
TANG M, 2004, J ELECT, V32, P787
[10]  
YEE KS, 1966, IEEE T ANTENN PROPAG, VAP14, P302