Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution

被引:101
作者
Mahmoudi, Ahmed [1 ]
Mejri, Imen [1 ]
Abbassi, Mohamed Ammar [1 ]
Omri, Ahmed [1 ]
机构
[1] Fac Sci Gafsa, UR Unite Rech Mat Energie & Energies Renouvelable, Gafsa 2112, Tunisia
关键词
Lattice Boltzmann Method; Natural convection; Nanofluid; Magnetic field; Linear temperature distribution; HEAT-TRANSFER; MAGNETIC-FIELD; RECTANGULAR ENCLOSURE; SQUARE CAVITY; FLOW; WATER;
D O I
10.1016/j.powtec.2014.02.032
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper examines the natural convection in a square enclosure filled with a water-Al2O3 nanofluid and is subjected to a magnetic field. The bottom wall is uniformly heated and vertical walls are linearly heated whereas the top wall is well insulated. Lattice Boltzmann Method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra = 10(3) to 10(5), Hartmann number varied from Ha = 0 to 60, the inclination angle of the magnetic field relative to the horizontal plane gamma = 0 degrees to 180 degrees and the solid volume fraction of the nanoparticles between phi = 0 and 6%. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it decreases with an increase of the Hartmann number. Also for Ra >= 5 Chi 10(4) and for the range of Hartmann number study, we note that the heat transfer and fluid flow depend strongly upon the direction of magnetic field. In addition, according the Hartmann number, it observed that the magnetic field direction controls the effects of nanoparticles. 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 271
页数:15
相关论文
共 42 条
[1]   Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-Water nanofluid [J].
Abu-Nada, Eiyad ;
Chamkha, Ali J. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (12) :2339-2352
[2]   Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid [J].
Abu-Nada, Eiyad ;
Chamkha, Ali J. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2010, 29 (06) :472-482
[3]   Effects of Variable Viscosity and Thermal Conductivity of CuO-Water Nanofluid on Heat Transfer Enhancement in Natural Convection: Mathematical Model and Simulation [J].
Abu-Nada, Eiyad .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2010, 132 (05) :1-9
[4]   Effect of nanofluid variable properties on natural convection in enclosures [J].
Abu-Nada, Eiyad ;
Masoud, Ziyad ;
Oztop, Hakan F. ;
Campo, Antonio .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (03) :479-491
[5]   Effects of variable viscosity and thermal conductivity of Al2O3-water nanofluid on heat transfer enhancement in natural convection [J].
Abu-Nada, Eiyad .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2009, 30 (04) :679-690
[6]   Numerical investigation of natural convection in a rectangular enclosure due to partial heating and cooling at vertical walls [J].
Alam, Pravez ;
Kumar, Ashok ;
Kapoor, S. ;
Ansari, S. R. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2403-2414
[7]   NATURAL-CONVECTION HEAT-TRANSFER IN A RECTANGULAR ENCLOSURE WITH A TRANSVERSE MAGNETIC-FIELD [J].
ALCHAAR, S ;
VASSEUR, P ;
BILGEN, E .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1995, 117 (03) :668-673
[8]   THE VISCOSITY OF CONCENTRATED SUSPENSIONS AND SOLUTIONS [J].
BRINKMAN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1952, 20 (04) :571-571
[9]   Natural-convection flow under a magnetic field in an inclined rectangular enclosure heated and cooled on a acent walls [J].
Ece, Mehmet Cem ;
Bueyuek, Elif .
FLUID DYNAMICS RESEARCH, 2006, 38 (08) :564-590
[10]   Lattice Boltzmann simulation of natural convection heat transfer in nanofluids [J].
Fattahi, Ehsan ;
Farhadi, Mousa ;
Sedighi, Kurosh ;
Nemati, Hasan .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 52 :137-144