Coronal electron temperature in the protracted solar minimum, the cycle 24 mini maximum, and over centuries

被引:18
作者
Schwadron, N. A. [1 ,2 ]
Goelzer, M. L. [1 ]
Smith, C. W. [1 ]
Kasper, J. C. [3 ]
Korreck, K. [3 ]
Leamon, R. J. [4 ]
Lepri, S. T. [5 ]
Maruca, B. A. [6 ]
McComas, D. [2 ,7 ]
Steven, M. L. [3 ]
机构
[1] Univ New Hampshire, Durham, NH 03824 USA
[2] SW Res Inst, San Antonio, TX USA
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[4] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
[5] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA
[6] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[7] Univ Texas San Antonio, San Antonio, TX USA
基金
美国国家科学基金会;
关键词
HELIOSPHERIC MAGNETIC-FIELD; WIND; FLUX; PREDICTION; EVOLUTION;
D O I
10.1002/2013JA019397
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent in situ observations of the solar wind show that charge states (e.g., the O7+/O6+ and C6+/C5+ abundance ratios) evolved through the extended, deep solar minimum between solar cycles 23 and 24 (i.e., from 2006 to 2009) reflecting cooler electron temperatures in the corona. We extend previous analyses to study the evolution of the coronal electron temperature through the protracted solar minimum and observe not only the reduction in coronal temperature in the cycles 23-24 solar minimum but also a small increase in coronal temperature associated with increasing activity during the "mini maximum" in cycle 24. We use a new model of the interplanetary magnetic flux since 1749 to estimate coronal electron temperatures over more than two centuries. The reduction in coronal electron temperature in the cycles 23-24 protracted solar minimum is similar to reductions observed at the beginning of the Dalton Minimum (similar to 1805-1840). If these trends continue to reflect the evolution of the Dalton Minimum, we will observe further reductions in coronal temperature in the cycles 24-25 solar minimum. Preliminary indications in 2013 do suggest a further post cycle 23 decline in solar activity. Thus, we extend our understanding of coronal electron temperature using the solar wind scaling law and compare recent reductions in coronal electron temperature in the protracted solar minimum to conditions that prevailed in the Dalton Minimum.
引用
收藏
页码:1486 / 1492
页数:7
相关论文
共 27 条
[1]   The heliospheric magnetic field from 850 to 2000 AD inferred from 10Be records -: art. no. A12102 [J].
Caballero-Lopez, RA ;
Moraal, H ;
McCracken, KG ;
McDonald, FB .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A12)
[2]   Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002 [J].
Cane, HV ;
Richardson, IG .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A4)
[3]  
Crooker N. U., 2010, ARXIV E PRINTS
[4]   An analysis of heliospheric magnetic field flux based on sunspot number from 1749 to today and prediction for the coming solar minimum [J].
Goelzer, Molly L. ;
Smith, Charles W. ;
Schwadron, Nathan A. ;
McCracken, K. G. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (12) :7525-7531
[5]   ENERGY-BALANCE OF STELLAR CORONAE .2. EFFECT OF CORONAL HEATING [J].
HAMMER, R .
ASTROPHYSICAL JOURNAL, 1982, 259 (02) :779-791
[6]   EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE [J].
Kasper, J. C. ;
Stevens, M. L. ;
Korreck, K. E. ;
Maruca, B. A. ;
Kiefer, K. K. ;
Schwadron, N. A. ;
Lepri, S. T. .
ASTROPHYSICAL JOURNAL, 2012, 745 (02)
[7]  
LEER E, 1982, SPACE SCI REV, V33, P161, DOI 10.1007/BF00213253
[8]   SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS [J].
Lepri, S. T. ;
Landi, E. ;
Zurbuchen, T. H. .
ASTROPHYSICAL JOURNAL, 2013, 768 (01)
[9]   Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects [J].
Lockwood, M. ;
Owens, M. ;
Rouillard, A. P. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
[10]   Reconstruction and Prediction of Variations in the Open Solar Magnetic Flux and Interplanetary Conditions [J].
Lockwood, Mike .
LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (04)