Convergence Rates for Linear Inverse Problems in the Presence of an Additive Normal Noise

被引:13
|
作者
Hofinger, Andreas [1 ]
Pikkarainen, Hanna K. [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
美国国家科学基金会;
关键词
Convergence rates; Linear inverse problems; Parameter choice rules; Statistical inversion theories; OPERATOR-EQUATIONS;
D O I
10.1080/07362990802558295
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we examine a finite-dimensional linear inverse problem where the measurements are disturbed by an additive normal noise. The problem is solved both in the frequentist and in the Bayesian frameworks. Convergence of the used methods when the noise tends to zero is studied in the Ky Fan metric. The obtained convergence rate results and parameter choice rules are of a similar structure for both approaches.
引用
收藏
页码:240 / 257
页数:18
相关论文
共 50 条
  • [41] Increasing resolution and instability for linear inverse scattering problems
    Kow, Pu-Zhao
    Salo, Mikko
    Zou, Sen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (01)
  • [42] ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR LINEAR INVERSE PROBLEMS
    Jiao, Yuling
    Jin, Qinian
    Lu, Xiliang
    Wang, Weijie
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2114 - 2137
  • [43] Convergence analysis of (statistical) inverse problems under conditional stability estimates
    Werner, Frank
    Hofmann, Bernd
    INVERSE PROBLEMS, 2020, 36 (01)
  • [44] Convergence Rates for Learning Linear Operators from Noisy Data
    de Hoop, Maarten V.
    Kovachki, Nikola B.
    Nelsen, Nicholas H.
    Stuart, Andrew M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (02) : 480 - 513
  • [45] Convergence rates of empirical Bayesian estimation in a class of linear models
    Wei, LS
    STATISTICA SINICA, 1998, 8 (02) : 589 - 605
  • [46] Convergence rates of accelerated proximal gradient algorithms under independent noise
    Sun, Tao
    Barrio, Roberto
    Jiang, Hao
    Cheng, Lizhi
    NUMERICAL ALGORITHMS, 2019, 81 (02) : 631 - 654
  • [47] CONVERGENCE RATES FOR GENERAL ELLIPTIC HOMOGENIZATION PROBLEMS IN LIPSCHITZ DOMAINS
    Xu, Qiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (06) : 3742 - 3788
  • [48] Convergence rates of a regularized Newton method in sound-hard inverse scattering
    Hohage, T
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) : 125 - 142
  • [49] Convergence rates of accelerated proximal gradient algorithms under independent noise
    Tao Sun
    Roberto Barrio
    Hao Jiang
    Lizhi Cheng
    Numerical Algorithms, 2019, 81 : 631 - 654
  • [50] On Architecture Selection for Linear Inverse Problems with Untrained Neural Networks
    Sun, Yang
    Zhao, Hangdong
    Scarlett, Jonathan
    ENTROPY, 2021, 23 (11)