Convergence Rates for Linear Inverse Problems in the Presence of an Additive Normal Noise

被引:13
|
作者
Hofinger, Andreas [1 ]
Pikkarainen, Hanna K. [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
美国国家科学基金会;
关键词
Convergence rates; Linear inverse problems; Parameter choice rules; Statistical inversion theories; OPERATOR-EQUATIONS;
D O I
10.1080/07362990802558295
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we examine a finite-dimensional linear inverse problem where the measurements are disturbed by an additive normal noise. The problem is solved both in the frequentist and in the Bayesian frameworks. Convergence of the used methods when the noise tends to zero is studied in the Ky Fan metric. The obtained convergence rate results and parameter choice rules are of a similar structure for both approaches.
引用
收藏
页码:240 / 257
页数:18
相关论文
共 50 条
  • [1] Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces
    Albani, V.
    Elbau, P.
    de Hoop, M. V.
    Scherzer, O.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (05) : 521 - 540
  • [2] ON THE LIFTING OF DETERMINISTIC CONVERGENCE RATES FOR INVERSE PROBLEMS WITH STOCHASTIC NOISE
    Gerth, Daniel
    Hofinger, Andreas
    Ramlau, Ronny
    INVERSE PROBLEMS AND IMAGING, 2017, 11 (04) : 663 - 687
  • [3] On the Asymptotical Regularization for Linear Inverse Problems in Presence of White Noise
    Lu, Shuai
    Niu, Pingping
    Werner, Frank
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (01) : 1 - 28
  • [4] Convergence rates of Tikhonov regularizations for elliptic and parabolic inverse radiativity problems
    Chen, De-Han
    Jiang, Daijun
    Zou, Jun
    INVERSE PROBLEMS, 2020, 36 (07)
  • [5] On the Convergence of Stochastic Gradient Descent for Linear Inverse Problems in Banach Spaces
    Jin, Bangti
    Kereta, Zeljko
    SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (02): : 671 - 705
  • [7] Stochastic Elliptic Inverse Problems. Solvability, Convergence Rates, Discretization, and Applications
    Dambrine, Marc
    Khan, Akhtar A.
    Sama, Miguel
    Starkloff, Hans-Joerg
    JOURNAL OF CONVEX ANALYSIS, 2023, 30 (03) : 851 - 885
  • [8] A Fast Algorithm for Solving Linear Inverse Problems with Uniform Noise Removal
    Zhang, Xiongjun
    Ng, Michael K.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (02) : 1214 - 1240
  • [9] A Fast Algorithm for Solving Linear Inverse Problems with Uniform Noise Removal
    Xiongjun Zhang
    Michael K. Ng
    Journal of Scientific Computing, 2019, 79 : 1214 - 1240
  • [10] Regularization of Linear Inverse Problems with Irregular Noise Using Embedding Operators
    Li, Xinyan
    Hubmer, Simon
    Lu, Shuai
    Ramlau, Ronny
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (04): : 2053 - 2075