A uniqueness theorem for the boundary value problems with non-linear dependence on the spectral parameter in the boundary conditions

被引:41
作者
Chernozhukova, A. [2 ]
Freiling, G. [1 ]
机构
[1] Univ Duisburg Essen, Fachbereich Math, Duisburg, Germany
[2] Saratov NG Chernyshevskii State Univ, Dept Math, Saratov, Russia
关键词
inverse spectral problem; pencils of differential operators; uniqueness theorem; STURM-LIOUVILLE PROBLEMS; EIGENVALUE PROBLEMS; EQUATIONS;
D O I
10.1080/17415970802538550
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An inverse spectral problem is considered for the non-self-adjoint Sturm-Liouville differential equation on a finite interval with boundary conditions depending polynomially on the spectral parameter. We give a formulation of an associated inverse problem and prove a corresponding uniqueness theorem. The obtained result is a generalization of the similar result for the classical Sturm-Liouville operator on a finite interval.
引用
收藏
页码:777 / 785
页数:9
相关论文
共 15 条
[1]  
[Anonymous], DOKL AKAD NAUK AZER
[2]  
[Anonymous], 2005, STURM LIOUVILLE THEO
[3]   Recovery of the m-function from spectral data for generalized Sturm-Liouville problems [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 171 (1-2) :73-91
[4]   A uniqueness theorem for inverse eigenparameter dependent Sturm-Liouville problems [J].
Browne, PJ ;
Sleeman, BD .
INVERSE PROBLEMS, 1997, 13 (06) :1453-1462
[5]  
Freiling G., 2001, INVERSE STURM LIOUVI
[6]   Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions [J].
Guliyev, NJ .
INVERSE PROBLEMS, 2005, 21 (04) :1315-1330
[7]  
Levitan B.M., 1984, INVERSE STURM LIOUVI
[8]  
Marchenko, 1986, STURM LIOUVILLE OPER
[9]  
Mennicken R, 2003, N HOLLAND MATH STUDI, V192
[10]  
Ramm A. G., 2005, Inverse Problems: Mathematical and Analytical Techniques with Applications to Engineering, DOI [10.1007/b100958, DOI 10.1007/B100958]