Nonparametric monitoring of multiple count data

被引:16
作者
Qiu, Peihua [1 ]
He, Zhen [2 ]
Wang, Zhiqiong [3 ]
机构
[1] Univ Florida, Dept Biostat, Gainesville, FL USA
[2] Tianjin Univ, Coll Management & Econ, Tianjin, Peoples R China
[3] Tianjin Univ Technol, Sch Management, Tianjin, Peoples R China
基金
美国国家科学基金会;
关键词
Distribution-free; log-linear modeling; multiple count data; nonparametric procedures; Poisson distribution; statistical process control; CONTROL CHARTS; MULTIVARIATE; MODEL;
D O I
10.1080/24725854.2018.1530486
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Process monitoring of multiple count data has recently received considerable attention in the statistical process control literature. Most existing methods on this topic are based on parametric modeling of the observed process data. However, the assumed parametric models are often invalid in practice, leading to unreliable performance of the related control charts. In this article, we first show the consequence of using a parametric control chart in cases where the underlying parametric distribution is invalid. Then, we thoroughly investigate the performance of some parametric and nonparametric control charts in monitoring multiple count data. Our numerical results show that nonparametric methods can provide a more reliable and effective process monitoring in such cases. A real-data example about the crime log of the University of Florida Police Department is used for illustrating the implementation of the related control charts.
引用
收藏
页码:972 / 984
页数:13
相关论文
共 42 条
[1]  
AGRESTI A., 2013, Categorical data analysis, VThird
[2]  
AITCHISON J, 1989, BIOMETRIKA, V76, P643
[3]   Two simple Shewhart-type multivariate nonparametric control charts [J].
Boone, J. M. ;
Chakraborti, S. .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2012, 28 (02) :130-140
[4]   A multivariate Poisson mixture model for marketing applications [J].
Brijs, T ;
Karlis, D ;
Swinnen, G ;
Vanhoof, K ;
Wets, G ;
Manchanda, P .
STATISTICA NEERLANDICA, 2004, 58 (03) :322-348
[5]   Self-Starting CUSCORE Control Charts for Individual Multivariate Observations [J].
Capizzi, Giovanna ;
Masarotto, Guido .
JOURNAL OF QUALITY TECHNOLOGY, 2010, 42 (02) :136-151
[6]   DISTRIBUTION-FREE CUMULATIVE SUM CONTROL CHARTS USING BOOTSTRAP-BASED CONTROL LIMITS [J].
Chatterjee, Snigdhansu ;
Qiu, Peihua .
ANNALS OF APPLIED STATISTICS, 2009, 3 (01) :349-369
[7]   A Distribution-Free Multivariate Control Chart [J].
Chen, Nan ;
Zi, Xuemin ;
Zou, Changliang .
TECHNOMETRICS, 2016, 58 (04) :448-459
[8]   Multivariate Exponentially Weighted Moving-Average Chart for Monitoring Poisson Observations [J].
Chen, Nan ;
Li, Zhonghua ;
Ou, Yanjing .
JOURNAL OF QUALITY TECHNOLOGY, 2015, 47 (03) :252-263
[9]   Attribute control chart for multivariate Poisson distribution [J].
Chiu, Jing-Er ;
Kuo, Tsen-I .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (01) :146-158
[10]   Control charts for fraction nonconforming in a bivariate binomial process [J].
Chiu, Jing-Er ;
Kuo, Tsen-I .
JOURNAL OF APPLIED STATISTICS, 2010, 37 (10) :1717-1728