A geometric inequality and a low M-estimate

被引:14
作者
Klartag, B [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
Asymptotic geometric analysis; diameters of sections;
D O I
10.1090/S0002-9939-04-07484-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an integral inequality connecting volumes and diameters of sections of a convex body. We apply this inequality to obtain some new inequalities concerning diameters of sections of convex bodies, among which is our "low M-estimate". Also, we give novel, alternative proofs to some known results, such as the fact that a finite volume ratio body has proportional sections that are isomorphic to a Euclidean ball.
引用
收藏
页码:2619 / 2628
页数:10
相关论文
共 17 条
[1]  
Ball K., 1997, MATH SCI RES I PUBLI, V31
[2]  
Bonnesen T., 1987, Theory of convex bodies
[3]  
Giannopoulos AA, 1998, J REINE ANGEW MATH, V497, P113
[4]  
Giannopoulos AA, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P707, DOI 10.1016/S1874-5849(01)80019-X
[5]   On the diameter of proportional sections of a symmetric convex body [J].
Giannopoulos, AA ;
Milman, VD .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (01) :5-19
[6]  
GORDON Y, 1988, SPRINGER LECT NOTES, V1317, P84
[7]  
KUPERBERG G, 1999, MATH SCI RES I PUBL, V34, P117
[8]  
MILMAN VD, 1985, P AM MATH SOC, V94, P445
[9]  
MILMAN VD, 1988, LECT NOTES MATH, V1317, P107
[10]  
MILMAN VD, 1985, LECT NOTES MATH, V1166, P106