Aptasensors for detection of microbial and viral pathogens

被引:202
作者
Torres-Chavolla, Edith [1 ]
Alocilja, Evangelyn C. [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
关键词
Aptamers; Aptasensor; Pathogen detection; Complex targets; Nanoparticle-based platforms; IN-VITRO SELECTION; HEPATITIS-C VIRUS; APTAMER-BASED BIOSENSORS; MOLECULAR RECOGNITION ELEMENTS; NUCLEIC-ACID APTAMERS; HIGH-AFFINITY LIGANDS; DNA CAPTURE ELEMENTS; HIV-1 TAT PROTEIN; BIO-BAR CODES; RNA APTAMERS;
D O I
10.1016/j.bios.2008.11.010
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Aptamers are specific nucleic acid sequences that can bind to a wide range of non-nucleic acid targets with high affinity and specificity. These molecules are identified and selected through an in vitro process called SELEX (systematic evolution of ligands by exponential enrichment). Proteins are the most common targets in aptamer selection. In diagnostic and detection assays, aptamers; represent an alternative to antibodies as recognition agents. Cellular detection is a promising area in aptamer research. one of its principal advantages is the ability to target and specifically differentiate microbial strains without having previous knowledge of the membrane molecules or structural changes present in that particular microorganism. The present review focuses on aptamers, SELEX procedures, and aptamer-based biosensors (aptasensors) for the detection of pathogenic microorganisms and viruses. Special emphasis is placed on nanoparticle-based platforms. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3175 / 3182
页数:8
相关论文
共 105 条
[1]  
Adler A, 2008, COMB CHEM HIGH T SCR, V11, P16, DOI 10.2174/138620708783398331
[2]   Market analysis of biosensors for food safety [J].
Alocilja, EC ;
Radke, SM .
BIOSENSORS & BIOELECTRONICS, 2003, 18 (5-6) :841-846
[3]   Quantum dot - Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer [J].
Bagalkot, Vaishali ;
Zhang, Liangfang ;
Levy-Nissenbaum, Etgar ;
Jon, Sangyong ;
Kantoff, Philip W. ;
Langer, Robert ;
Farokhzad, Omid C. .
NANO LETTERS, 2007, 7 (10) :3065-3070
[4]  
Baker BR, 2006, J AM CHEM SOC, V128, P3138, DOI 10.1021/ja056957p
[5]   Surface immobilization methods for aptamer diagnostic applications [J].
Balamurugan, Subramanian ;
Obubuafo, Anne ;
Soper, Steven A. ;
Spivak, David A. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 390 (04) :1009-1021
[6]   A novel electrochemical detection method for aptamer biosensors [J].
Bang, GS ;
Cho, S ;
Kim, BG .
BIOSENSORS & BIOELECTRONICS, 2005, 21 (06) :863-870
[7]   Development and characterization of monoclonal antibodies and aptamers against major antigens of Mycobacterium avium subsp paratuberculosis [J].
Bannantine, John P. ;
Radosevich, Thomas J. ;
Stabel, Judith R. ;
Sreevatsan, Srinand ;
Kapur, Vivek ;
Paustian, Michael L. .
CLINICAL AND VACCINE IMMUNOLOGY, 2007, 14 (05) :518-526
[8]   Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase [J].
Biroccio, A ;
Hamm, J ;
Incitti, I ;
De Francesco, R ;
Tomei, L .
JOURNAL OF VIROLOGY, 2002, 76 (08) :3688-3696
[9]   Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels - Selective targeting of endothelial regulatory protein pigpen [J].
Blank, M ;
Weinschenk, T ;
Priemer, M ;
Schluesener, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (19) :16464-16468
[10]   In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection [J].
Bruno, JG ;
Kiel, JL .
BIOSENSORS & BIOELECTRONICS, 1999, 14 (05) :457-464