Impact of particle elasticity on particle-based drug delivery systems

被引:290
作者
Anselmo, Aaron C. [1 ]
Mitragotri, Samir [2 ]
机构
[1] MIT, David H Koch Inst Integrat Canc Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Calif Santa Barbara, Dept Chem Engn, Ctr Bioengn, Santa Barbara, CA 93106 USA
关键词
Drug delivery; Nanoparticles; Elasticity; Rigidity; Flexibility; Circulation; Endocytosis; Targeting; BY-LAYER NANOPARTICLES; BLOOD CAPILLARY MODEL; POLYELECTROLYTE CAPSULES; MECHANICAL-PROPERTIES; CANCER-THERAPY; POLYMERIC NANOPARTICLES; REGENERATIVE MEDICINE; HYDROGEL PARTICLES; MEDIATED DELIVERY; FUTURE-PROSPECTS;
D O I
10.1016/j.addr.2016.01.007
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Modification of nano/micro-particle physical parameters (e.g. size, shape, surface charge) has proven to be an effective method to enhance their delivery abilities. Recently, advances in particle synthesis have facilitated investigations into the role that particle elasticity plays in modulating drug delivery processes. This review will highlight: (i) methods to tune particle elasticity, (ii) the role particle elasticity plays in cellular internalization, (iii) the role of particle elasticity in modulating circulation times, (iv) the effect of particle elasticity on altering biodistribution and tissue targeting, and (v) the application of computational methods to explain the differences in cellular internalization of particles of different elasticities. Overall, literature reports suggest a complex relationship between particle elasticity and drug delivery processes. Despite this complex relationship, it is clear from numerous in vitro and in vivo studies that particle elasticity is an important parameter that can be leveraged to improve blood circulation, tissue targeting, and specific interactions with cells. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:51 / 67
页数:17
相关论文
共 108 条
[1]  
Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev-bioeng-071811-150124, 10.1146/annurev.bioeng-071811-150124]
[2]  
Alexander J.F., 2015, ADV HEALTHCARE MAT
[3]   Factors affecting the clearance and biodistribution of polymeric nanoparticles [J].
Alexis, Frank ;
Pridgen, Eric ;
Molnar, Linda K. ;
Farokhzad, Omid C. .
MOLECULAR PHARMACEUTICS, 2008, 5 (04) :505-515
[4]   Drug delivery systems: Entering the mainstream [J].
Allen, TM ;
Cullis, PR .
SCIENCE, 2004, 303 (5665) :1818-1822
[5]   A Review of Clinical Translation of Inorganic Nanoparticles [J].
Anselmo, Aaron C. ;
Mitragotri, Samir .
AAPS JOURNAL, 2015, 17 (05) :1041-1054
[6]   Elasticity of Nanopartides Influences Their Blood Circulation, Phagocytosis, Endocytosis, and Targeting [J].
Anselmo, Aaron C. ;
Zhang, Mengwen ;
Kumar, Sunny ;
Vogus, Douglas R. ;
Menegatti, Stefano ;
Helgeson, Matthew E. ;
Mitragotri, Samir .
ACS NANO, 2015, 9 (03) :3169-3177
[7]   Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation [J].
Anselmo, Aaron C. ;
Gilbert, Jonathan B. ;
Kumar, Sunny ;
Gupta, Vivek ;
Cohen, Robert E. ;
Rubner, Michael F. ;
Mitragotri, Samir .
JOURNAL OF CONTROLLED RELEASE, 2015, 199 :29-36
[8]   Platelet-like Nanoparticles: Mimicking Shape, Flexibility, and Surface Biology of Platelets To Target Vascular Injuries [J].
Anselmo, Aaron C. ;
Modery-Pawlowski, Christa Lynn ;
Menegatti, Stefano ;
Kumar, Sunny ;
Vogus, Douglas R. ;
Tian, Lewis L. ;
Chen, Ming ;
Squires, Todd M. ;
Sen Gupta, Anirban ;
Mitragotri, Samir .
ACS NANO, 2014, 8 (11) :11243-11253
[9]   Cell-mediated delivery of nanoparticles: Taking advantage of circulatory cells to target nanoparticles [J].
Anselmo, Aaron C. ;
Mitragotri, Samir .
JOURNAL OF CONTROLLED RELEASE, 2014, 190 :531-541
[10]   An overview of clinical and commercial impact of drug delivery systems [J].
Anselmo, Aaron C. ;
Mitragotri, Samir .
JOURNAL OF CONTROLLED RELEASE, 2014, 190 :15-28