Stochastic processes and models

被引:0
作者
Stoyanov, Jordan [1 ]
机构
[1] Univ Newcastle, Newcastle, NSW 2308, Australia
关键词
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
引用
收藏
页码:1013 / 1014
页数:3
相关论文
共 50 条
[11]   Enhancing rheological muscle models with stochastic processes [J].
Zagrodny, Bartlomiej ;
Wojnicz, Wiktoria ;
Ludwicki, Michal ;
Baranski, Robert .
ACTA OF BIOENGINEERING AND BIOMECHANICS, 2023, 25 (03) :129-138
[12]   Stochastic models for the in silico simulation of synaptic processes [J].
Andrea Bracciali ;
Marcello Brunelli ;
Enrico Cataldo ;
Pierpaolo Degano .
BMC Bioinformatics, 9
[13]   ANOMALOUS DIFFUSION PROCESSES: STOCHASTIC MODELS AND THEIR PROPERTIES [J].
CARNAFFAN, S. E. A. N. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (03) :514-517
[14]   STOCHASTIC MODELS FOR SOCIAL PROCESSES - BARTHOLOMEW,DJ [J].
HARVEY, D .
URBAN STUDIES, 1970, 7 (01) :109-111
[15]   Conditional generative models for learning stochastic processes [J].
Salvatore Certo ;
Anh Pham ;
Nicolas Robles ;
Andrew Vlasic .
Quantum Machine Intelligence, 2023, 5
[16]   Conditional generative models for learning stochastic processes [J].
Certo, Salvatore ;
Pham, Anh ;
Robles, Nicolas ;
Vlasic, Andrew .
QUANTUM MACHINE INTELLIGENCE, 2023, 5 (02)
[17]   Symmetry, integrable chain models and stochastic processes [J].
Albeverio, S ;
Fei, SM .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (06) :723-750
[18]   COMPARISON OF LOCATION MODELS FOR STOCHASTIC-PROCESSES [J].
LUSCHGY, H .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 93 (01) :39-66
[20]   STOCHASTIC MODELS FOR SOCIAL PROCESSES - BARTHOLOMEW,DJ [J].
GRIMM, H .
BIOMETRISCHE ZEITSCHRIFT, 1974, 16 (08) :538-539