Scalable synthesis of graphene-wrapped Li4Ti5O12 dandelion-like microspheres for lithium-ion batteries with excellent rate capability and long-cycle life

被引:69
作者
Kong, Dezhi [1 ]
Ren, Weina [1 ]
Luo, Yongsong [2 ]
Yang, Yaping [1 ]
Cheng, Chuanwei [1 ]
机构
[1] Tongji Univ, Sch Phys Sci & Engn, MOE Key Lab Adv Microstruct Mat, Shanghai 200092, Peoples R China
[2] Xinyang Normal Univ, Dept Phys & Elect Engn, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-RATE PERFORMANCE; ANODE MATERIAL; ELECTROCHEMICAL PROPERTIES; NANOSTRUCTURED MATERIALS; REVERSIBLE CAPACITY; FACILE SYNTHESIS; ENERGY-STORAGE; CARBON; SPINEL; ARRAYS;
D O I
10.1039/c4ta04711g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A three-dimensional dandelion-like Li4Ti5O12@graphene microsphere electrode is designed by using a simple and scalable solution fabrication process. The graphene nanosheets are incorporated into the porous dandelion-like Li4Ti5O12 microspheres homogenously, which provide a highly conductive network for electron transportation. When tested as an anode for Li-ion batteries, the dandelion-like Li4Ti5O12@graphene composite with 3 wt% graphene exhibits excellent rate capabilities and superior cycle life between 0.01 and 3.0 V. The capacities of Li4Ti5O12@graphene (3 wt%) reach 206 mA h g(-1) after 500 cycles between 0.01 and 3.0 V and 166 mA h g(-1) after 100 cycles between 0.7 and 3.0 V at a current density of 0.12 A g(-1), respectively. In addition, Li4Ti5O12-based anode materials at lower voltage can offer a higher cell voltage and discharge capacity for lithium-ion batteries. Hence, it is significant to study the electrochemical behaviors of the Li4Ti5O12-based anode in a wide voltage range of 0.01-3.0 V. This facile and scalable method for Li4Ti5O12@graphene composites represents an effective strategy to develop advanced electrochemical energy storage systems with long cycle life and high rate performance.
引用
收藏
页码:20221 / 20230
页数:10
相关论文
共 54 条
[1]   Extended lithium titanate cycling potential window with near zero capacity loss [J].
Ahn, Dongjoon ;
Xiao, Xingcheng .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (08) :796-799
[2]   Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel [J].
Aldon, L ;
Kubiak, P ;
Womes, M ;
Jumas, JC ;
Olivier-Fourcade, J ;
Tirado, JL ;
Corredor, JI ;
Vicente, CP .
CHEMISTRY OF MATERIALS, 2004, 16 (26) :5721-5725
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Size Effects in the Li4+xTi5O12 Spinel [J].
Borghols, W. J. H. ;
Wagemaker, M. ;
Lafont, U. ;
Kelder, E. M. ;
Mulder, F. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (49) :17786-17792
[6]   Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0 ≤ x ≤ 1) for lithium batteries [J].
Chen, CH ;
Vaughey, JT ;
Jansen, AN ;
Dees, DW ;
Kahaian, AJ ;
Goacher, T ;
Thackeray, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (01) :A102-A104
[7]   Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries [J].
Chen, Jizhang ;
Yang, Li ;
Fang, Shaohua ;
Tang, Yufeng .
ELECTROCHIMICA ACTA, 2010, 55 (22) :6596-6600
[8]   Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life [J].
Chen, Shuai ;
Xin, Yuelong ;
Zhou, Yiyang ;
Ma, Yurong ;
Zhou, Henghui ;
Qi, Limin .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :1924-1930
[9]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[10]   Graphene-Wrapped Polyaniline Hollow Spheres As Novel Hybrid Electrode Materials for Supercapacitor Applications [J].
Fan, Wei ;
Zhang, Chao ;
Tjiu, Weng Weei ;
Pramoda, Kumari Pallathadka ;
He, Chaobin ;
Liu, Tianxi .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) :3382-3391